Abstract 226P
Background
Urothelial carcinoma (UC) has a highly complex genomic landscape. With the spread of immunotherapy, accurate stratification strategies are needed. As cancer tissues are now frequently screened for specific sets of mutations, a large number of samples has become available for analysis. Classification of patients with similar mutation profiles may help identifying subgroups of patients outcomes. However, classification based on somatic mutations is challenging due to the sparseness and heterogeneity of the data.
Methods
A retrospective study was performed to identify the prognosis-related somatic mutations from 192 UC in The Cancer Genome Atlas (TCGA) database. Cox regression were performed to screen out prognostic genes.
Results
A total of 176 genes were related with immuno-survival. Then, a stepwise multivariate Cox regression analysis was performed, and 14 gene were selected to establish a predictive model. Compared with the wildtype group, the patients with mutated signature had unfavorable to prognosis (p<0.001). ROC curve analysis demonstrated the predictive ability for 1-, 3-, 5-, and 10-year OS, with areas under the curve (AUCs) of 0.7684, 0.667,0.619 and 0.647, respectively. In mutated signature cohorts, the five most frequently mutated genes were TP53 (50%), KMT2D (43%), LRP1B (33%), PER1 (33%), and RNF213 (33%). Dissimilarly, the five most frequently mutated genes were TP53 58%), ARID1A (29%), KMT2D (29%), RNF213 (27%), and KDM6A (26%) in wildtype cohorts, which may imply that different characteristic states have different molecular mechanisms.
Conclusions
These data underline the potential value of using somatic mutations to accurately stratify UC patients into clinically actionable subgroups. This model could reduce overtreatment in UC patients with mutations.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
310P - A study on the prediction of recurrence site of endometrial cancer using various machine learning techniques
Presenter: Wonkyo Shin
Session: Poster Display
Resources:
Abstract
311P - Circulating cytokines in the differential diagnosis of endometrial cancer
Presenter: Tatyana Abakumova
Session: Poster Display
Resources:
Abstract
312P - Molecular and genetic features of squamous cell carcinoma of vulvar cancer depending on HPV status
Presenter: Visola Navruzova
Session: Poster Display
Resources:
Abstract
313P - Efficacy and safety of oral metronomic chemotherapy in recurrent refractory advanced gynaecological cancer: Experience from regional cancer center of eastern India
Presenter: Ranti Ghosh
Session: Poster Display
Resources:
Abstract
314P - Perioperative outcomes in advanced epithelial ovarian cancer treated with neoadjuvant bevacizumab and chemotherapy: Real-world experience from an Indian cancer centre
Presenter: Upasana Palo
Session: Poster Display
Resources:
Abstract
315P - Real-world experience of niraparib as maintenance therapy in newly diagnosed advanced ovarian cancer: A single-center retrospective study
Presenter: Wenxin Liu
Session: Poster Display
Resources:
Abstract
316P - First evidence of olaparib maintenance therapy in patients with newly diagnosed BRCA wild-type ovarian cancer: A real-world multicenter study
Presenter: Jing Li
Session: Poster Display
Resources:
Abstract
317P - Attitudes of Israeli gynecologists towards risk reduction salpingo-oophorectomy at hysterectomy for benign conditions and the use of hormonal therapy
Presenter: wisam Assaf
Session: Poster Display
Resources:
Abstract
319P - Survival prediction for ovarian cancer patients from Taiwan cancer registry data
Presenter: Tzu-Pin Lu
Session: Poster Display
Resources:
Abstract
320P - Treatment patterns and outcomes in Indian patients with advanced ovarian cancer: A single center experience
Presenter: Pushpendra Hirapara
Session: Poster Display
Resources:
Abstract