Abstract 11P
Background
Breast cancer is the second leading cause of cancer deaths in women worldwide. Early detection of breast cancer has been demonstrated to improve patients' treatment outcomes and survival. Liquid biopsy based on detecting DNA shed by breast tumors into the circulation, known as circulating tumor DNA (ctDNA), has emerged as a promising non-invasive approach. However, differentiating benign breast lumps from malignant tumors remains a challenge in current clinical practice, and inaccurate detection may result in unnecessary invasive procedures.
Methods
To address this challenge, we employed a multimodal analysis approach, namely SPOT-MAS (Screen for the Presence of Tumor by DNA Methylation and Size) to profile alterations in methylation and fragment length patterns of cell free DNA (cfDNA) from 133 breast cancer patients and 59 patients with benign breast lumps comprising cysts and fibroadenomas.
Results
We identified multiple distinct end motifs, differential methylation and fragment length patterns across 22 chromosomes, which were further exploited as input features to build machine learning models to discriminate early-stage breast cancer patients from patients with benign lesions. The models achieved an area under the curve of 0.87 (95% CI: 0.79 – 0.94) and a sensitivity of 64.1% at 90% specificity in detecting patients with malignant tumors.
Conclusions
Therefore, our findings demonstrated that cancer-specific methylation and fragmentomic patterns in plasma cfDNA could serve as novel biomarkers for accurately differentiating malignant breast cancer patients from those with benign lesions.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Medical Genetics Institute and Gene Solutions Joint Stock Company, Vietnam.
Funding
Gene Solutions Joint Stock Company.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
581P - The associations between afatinib-related adverse events and survival outcomes in patients with lung cancer
Presenter: Wen-Chen Tang
Session: Poster Display
Resources:
Abstract
582P - Furmonertinib treatment in patients with EGFR-mutated non-small cell lung cancer and leptomeningeal metastases: A real-world study
Presenter: Haiyang Chen
Session: Poster Display
Resources:
Abstract
583P - RHBDL2 promotes non-small cell lung cancer metastasis and osimertinib resistance by activating the RAS/MEK/ERK signaling pathway through interaction with FGFR
Presenter: jun Deng
Session: Poster Display
Resources:
Abstract
584P - Upfront aumolertinib for preventing symptomatic central nervous system(CNS) metastases in EGFR-mutant non-small cell lung cancer without baseline CNS metastasis
Presenter: Tangfeng Lv
Session: Poster Display
Resources:
Abstract
585P - Real-world outcomes in patients with non-small cell lung cancer with EGFR exon 20 insertion mutations receiving mobocertinib
Presenter: Tony S.K. Mok
Session: Poster Display
Resources:
Abstract
586P - Clinical validation of a multiplex polymerase chain reaction (mPCR) assay to identify patients (pts) with NSCLC suitable for mobocertinib treatment
Presenter: Caicun Zhou
Session: Poster Display
Resources:
Abstract
587P - Exploring the prevalence and characteristics of human epidermal growth factor receptor 2 (HER2) alterations in non-small cell lung cancer: Analysis from a Malaysian cohort
Presenter: Ning Yi Yap
Session: Poster Display
Resources:
Abstract
588P - First real-world study with HER2 ADC in treating HER2-altered non-small cell lung cancer
Presenter: Kaihua Lu
Session: Poster Display
Resources:
Abstract
590P - A retrospective study of the prevalence and clinical outcomes of KRAS G12C mutated advanced non-small cell lung cancer (NSCLC) in Australian patients (pts)
Presenter: Ben Markman
Session: Poster Display
Resources:
Abstract
591P - The utility of next generation sequencing for KRAS gene variants prevalence in cytological and tissue samples in real-world NSCLC patients: A large single institution real-world study
Presenter: Adam Pluzanski
Session: Poster Display
Resources:
Abstract