Abstract 11P
Background
Breast cancer is the second leading cause of cancer deaths in women worldwide. Early detection of breast cancer has been demonstrated to improve patients' treatment outcomes and survival. Liquid biopsy based on detecting DNA shed by breast tumors into the circulation, known as circulating tumor DNA (ctDNA), has emerged as a promising non-invasive approach. However, differentiating benign breast lumps from malignant tumors remains a challenge in current clinical practice, and inaccurate detection may result in unnecessary invasive procedures.
Methods
To address this challenge, we employed a multimodal analysis approach, namely SPOT-MAS (Screen for the Presence of Tumor by DNA Methylation and Size) to profile alterations in methylation and fragment length patterns of cell free DNA (cfDNA) from 133 breast cancer patients and 59 patients with benign breast lumps comprising cysts and fibroadenomas.
Results
We identified multiple distinct end motifs, differential methylation and fragment length patterns across 22 chromosomes, which were further exploited as input features to build machine learning models to discriminate early-stage breast cancer patients from patients with benign lesions. The models achieved an area under the curve of 0.87 (95% CI: 0.79 – 0.94) and a sensitivity of 64.1% at 90% specificity in detecting patients with malignant tumors.
Conclusions
Therefore, our findings demonstrated that cancer-specific methylation and fragmentomic patterns in plasma cfDNA could serve as novel biomarkers for accurately differentiating malignant breast cancer patients from those with benign lesions.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Medical Genetics Institute and Gene Solutions Joint Stock Company, Vietnam.
Funding
Gene Solutions Joint Stock Company.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
571P - Dacomitinib in treatment-naïve EGFR-mutant NSCLC patients with multiple brain metastases: Initial efficacy and safety data from a phase II study
Presenter: Yongfeng Yu
Session: Poster Display
Resources:
Abstract
572P - Multivariable five-year survival prediction model for prognosing patients with EGFR-mutated NSCLC treated with EGFR-TKIs
Presenter: Qi-An Wang
Session: Poster Display
Resources:
Abstract
573P - LUMINATE-103: Real-world treatment patterns and outcomes of patients (pts) with epidermal growth factor receptor mutant (EGFR MU), non-squamous (NSQ) locally advanced/metastatic non-small cell lung cancer (a/mNSCLC): Pooled analysis of large US electronic health record (EHR) datasets
Presenter: Byoung Chul Cho
Session: Poster Display
Resources:
Abstract
574P - Efficacy and safety of dacomitinib in treatment-naïve patients with advanced NSCLC harboring uncommon EGFR mutations
Presenter: Lin Wu
Session: Poster Display
Resources:
Abstract
575P - Efficacy and safety of dacomitinib in treatment-naïve patients with advanced NSCLC and brain metastasis: A multicenter cohort study
Presenter: Puyuan Xing
Session: Poster Display
Resources:
Abstract
576P - Clonality of both EGFR and co-occurring TP53 mutations affect the treatment efficacy of the third-generation EGFR-TKIs in advanced-stage EGFR-mutant non-small cell lung cancer
Presenter: Wen Feng Fang
Session: Poster Display
Resources:
Abstract
577P - A study of the efficacy and safety of amivantamab in EGFR exon 20 insertion (E20I) mutations in NSCLC
Presenter: Daeho Choi
Session: Poster Display
Resources:
Abstract
578P - Tyrosine kinase inhibitor treatment of elderly patients with epidermal growth factor receptor mutated advanced non-small cell lung cancer: A multi-institute retrospective study
Presenter: Ling-Jen Hung
Session: Poster Display
Resources:
Abstract
579P - Real-world study of dacomitinib as first-line treatment for patients with EGFR-mutant non-small cell lung cancer
Presenter: Ji Eun Shin
Session: Poster Display
Resources:
Abstract
580P - Efficacy and safety of dacomitinib as first-line treatment for advanced non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor <italic>(EGFR)</italic> 21L858R mutation: A multicenter, ambispective, consecutive case-series study
Presenter: Shouzheng Wang
Session: Poster Display
Resources:
Abstract