Abstract 14P
Background
Classification of molecular subtypes of breast cancer is widely used in clinical decision-making, leading to different treatment responses and clinical outcomes. We classified molecular subtypes using a novel deep learning algorithm in whole-slide histopathological images (WSIs) with invasive ductal carcinoma of the breast.
Methods
We obtained 1,094 breast cancer cases with available hematoxylin and eosin-stained WSIs from the TCGA database. We applied a new deep learning algorithm for artificial neural networks (ANNs) that is completely different from the back-propagation method developed in previous studies.
Results
Our model based on the ANN algorithm had an accuracy of 67.8% for all datasets (training and testing), and the area under the receiver operating characteristic curve was 0.819 when classifying molecular subtypes of breast cancer. In approximately 30% of cases, the molecular subtype did not reflect the unique histological subtype, which lowered the accuracy. The set revealed relatively high sensitivity (70.5%) and specificity (84.4%).
Conclusions
Our approach involving this ANN model has favorable diagnostic performance for molecular classification of breast cancer based on WSIs and could provide reliable results for planning treatment strategies.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
310P - A study on the prediction of recurrence site of endometrial cancer using various machine learning techniques
Presenter: Wonkyo Shin
Session: Poster Display
Resources:
Abstract
311P - Circulating cytokines in the differential diagnosis of endometrial cancer
Presenter: Tatyana Abakumova
Session: Poster Display
Resources:
Abstract
312P - Molecular and genetic features of squamous cell carcinoma of vulvar cancer depending on HPV status
Presenter: Visola Navruzova
Session: Poster Display
Resources:
Abstract
313P - Efficacy and safety of oral metronomic chemotherapy in recurrent refractory advanced gynaecological cancer: Experience from regional cancer center of eastern India
Presenter: Ranti Ghosh
Session: Poster Display
Resources:
Abstract
314P - Perioperative outcomes in advanced epithelial ovarian cancer treated with neoadjuvant bevacizumab and chemotherapy: Real-world experience from an Indian cancer centre
Presenter: Upasana Palo
Session: Poster Display
Resources:
Abstract
315P - Real-world experience of niraparib as maintenance therapy in newly diagnosed advanced ovarian cancer: A single-center retrospective study
Presenter: Wenxin Liu
Session: Poster Display
Resources:
Abstract
316P - First evidence of olaparib maintenance therapy in patients with newly diagnosed BRCA wild-type ovarian cancer: A real-world multicenter study
Presenter: Jing Li
Session: Poster Display
Resources:
Abstract
317P - Attitudes of Israeli gynecologists towards risk reduction salpingo-oophorectomy at hysterectomy for benign conditions and the use of hormonal therapy
Presenter: wisam Assaf
Session: Poster Display
Resources:
Abstract
319P - Survival prediction for ovarian cancer patients from Taiwan cancer registry data
Presenter: Tzu-Pin Lu
Session: Poster Display
Resources:
Abstract
320P - Treatment patterns and outcomes in Indian patients with advanced ovarian cancer: A single center experience
Presenter: Pushpendra Hirapara
Session: Poster Display
Resources:
Abstract