Abstract 159P
Background
The stromal component constitutes as much as 90% of pancreatic cancer specimens, dynamically interacting with the tumor and adapting into a pro-survival environment. This poses a clinical challenge, as biopsies often miss cancer by only sampling stroma. By leveraging AI and image analysis, we aim to extract informative cues from stromal interactions for novel cancer biomarker identification. This approach offers the potential for enhanced diagnostic precision and a deeper understanding of pancreatic cancer biology.
Methods
Anonymized digital scans of pancreatic cancer and chronic pancreatitis were sourced from the Centre Hospitalier de l’Université de Montréal. QuPath 0.4.3 aided slide annotation, with subsequent TIF annotation export. Staining normalization was performed via the Mitkovetta technique in Python. Our process involved deep-learning stromal segmentation, prioritizing >95% stromal tiles using Ilastik. Feature extraction was executed utilizing computer vision techniques (Haralick features), alongside the pre-trained and class-trained ImageNet deep-neural network, VGG16.
Results
Our annotated, normalized, automated, and 95% stroma-probability method generated for the training cohort 9829 cancer and 1638 mass-forming pancreatitis tiles, and 10776 cancer and 1211 pancreatitis tiles for the testing set. The table highlights the performance of the classical computer vision approach (Haralicks features extraction in RGB). Furthermore, transferring the ImageNet VGG-16 pre-trained model to our dataset managed to predict the presence of adjacent cancer at 86.6% accuracy. Table: 159P
Training | Validation | |||
Haralicks features | Cancer (N=9829) vs None (N=1638) | P | Cancer (N=10776) vs None (N=1211) | P |
RGB-F2 | +66% | 7.52 X 10-308 | +8.2% | 1.37 X 10-9 |
RGB-F15 | +54% | 3.28 X 10-272 | +8.5% | 8.57 X 10-11 |
RGB F37 | +9.6% | 2.35 X 10-294 | +2.7% | 5.02 X 10-36 |
Conclusions
We demonstrate that normalized stromal tiles could predict the presence of cancer accurately just by their morphological features at HE staining. This highlights the importance of stroma for diagnostic purposes and can serve as the basis for future studies through multiplex imaging and spatial transcriptomics.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Vincent Quoc-Huy Trinh.
Funding
Fonds de Recherche Québec Santé.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
397P - Comparison between Y-site co-infusion versus standard dexamethasone for preventing hypersensitivity reactions from oxaliplatin administration: A randomized controlled trial
Presenter: jarearnjit Phavirunsiri
Session: Poster Display
Resources:
Abstract
398P - Evaluation of the effectiveness of denosumab therapy giant cell tumor of the pelvis
Presenter: Abbos Nurjabov
Session: Poster Display
Resources:
Abstract
399P - Long-term outcomes of patients with gastric cancer who received the best supportive care without any anticancer treatment
Presenter: Yohei Arihara
Session: Poster Display
Resources:
Abstract
401TiP - Oral opioid vs intravenous patient-controlled analgesia (PCA) with hydromorphone bolus-only or continuous infusion to maintain analgesia for severe cancer pain: A randomized phase III trial
Presenter: Cheng Huang
Session: Poster Display
Resources:
Abstract
407P - K-TrackTM: A streamlined personalized assay to detect molecular residual disease in solid tumors
Presenter: Nam Vo
Session: Poster Display
Resources:
Abstract
408P - Increased EGFR and MET expression and corresponding tumor microenvironment (TME) change in hepatocellular carcinoma (HCC) tissues after sorafenib (Sora) treatment
Presenter: Chia Jui Yen
Session: Poster Display
Resources:
Abstract
410P - Systematic evaluation of cell-free DNA fragmentation patterns for cancer diagnosis and enhanced cancer detection through integration of multiple fragmentations
Presenter: Xiangy-Yu Meng
Session: Poster Display
Resources:
Abstract
412P - Multiplex digital spatial profiling (DSP) of protein reveals distinct immune and molecular phenotypes in hepatocellular carcinoma
Presenter: Chia Jui Yen
Session: Poster Display
Resources:
Abstract
413P - Clinical utility of advanced features provided by circulating tumor DNA-based comprehensive genomic profiling
Presenter: Young-gon Kim
Session: Poster Display
Resources:
Abstract
414P - Landscape of ERBB2 mutations in advanced cancers (AC) using circulating tumor DNA (ctDNA) next-generation sequencing (NGS) in Asia and Middle East (AME)
Presenter: Byoung Chul Cho
Session: Poster Display
Resources:
Abstract