Abstract 159P
Background
The stromal component constitutes as much as 90% of pancreatic cancer specimens, dynamically interacting with the tumor and adapting into a pro-survival environment. This poses a clinical challenge, as biopsies often miss cancer by only sampling stroma. By leveraging AI and image analysis, we aim to extract informative cues from stromal interactions for novel cancer biomarker identification. This approach offers the potential for enhanced diagnostic precision and a deeper understanding of pancreatic cancer biology.
Methods
Anonymized digital scans of pancreatic cancer and chronic pancreatitis were sourced from the Centre Hospitalier de l’Université de Montréal. QuPath 0.4.3 aided slide annotation, with subsequent TIF annotation export. Staining normalization was performed via the Mitkovetta technique in Python. Our process involved deep-learning stromal segmentation, prioritizing >95% stromal tiles using Ilastik. Feature extraction was executed utilizing computer vision techniques (Haralick features), alongside the pre-trained and class-trained ImageNet deep-neural network, VGG16.
Results
Our annotated, normalized, automated, and 95% stroma-probability method generated for the training cohort 9829 cancer and 1638 mass-forming pancreatitis tiles, and 10776 cancer and 1211 pancreatitis tiles for the testing set. The table highlights the performance of the classical computer vision approach (Haralicks features extraction in RGB). Furthermore, transferring the ImageNet VGG-16 pre-trained model to our dataset managed to predict the presence of adjacent cancer at 86.6% accuracy. Table: 159P
Training | Validation | |||
Haralicks features | Cancer (N=9829) vs None (N=1638) | P | Cancer (N=10776) vs None (N=1211) | P |
RGB-F2 | +66% | 7.52 X 10-308 | +8.2% | 1.37 X 10-9 |
RGB-F15 | +54% | 3.28 X 10-272 | +8.5% | 8.57 X 10-11 |
RGB F37 | +9.6% | 2.35 X 10-294 | +2.7% | 5.02 X 10-36 |
Conclusions
We demonstrate that normalized stromal tiles could predict the presence of cancer accurately just by their morphological features at HE staining. This highlights the importance of stroma for diagnostic purposes and can serve as the basis for future studies through multiplex imaging and spatial transcriptomics.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Vincent Quoc-Huy Trinh.
Funding
Fonds de Recherche Québec Santé.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
373P - Investigating the impact of treatment on geriatric patients with locally advanced head and neck squamous cell carcinoma
Presenter: Yen Ting Liu
Session: Poster Display
Resources:
Abstract
374P - Immunohistochemical evaluation of oral lichen planus: A prospective clinical study
Presenter: Saravanan Sampoornam Pape
Session: Poster Display
Resources:
Abstract
375P - Survival and prognostic factors of head and neck squamous cell carcinoma patients treated with either definitive CCRT or post operative CCRT with platinum-based chemotherapy in Rajavithi hospital, Thailand
Presenter: wanit samadee
Session: Poster Display
Resources:
Abstract
376P - Nutrition as an independent prognostic factor in locally advanced nasopharyngeal carcinoma: A retrospective cohort study and propensity score-matched analysis
Presenter: haizhen yi
Session: Poster Display
Resources:
Abstract
377P - Oropharyngeal squamous cell carcinomas in Indian population: P16 positivity and treatment outcomes following chemoradiotherapy
Presenter: Parth Verma
Session: Poster Display
Resources:
Abstract
378P - A real-world retrospective analysis of the efficacy of pembrolizumab combined with chemotherapy as neoadjuvant treatment for locally advanced head and neck squamous cell carcinoma (LA HNSCC)
Presenter: zhu Liu
Session: Poster Display
Resources:
Abstract
379P - Nimotuzumab in combination with chemoradiation for patients with intermediate stage and locally advanced nasopharyngeal carcinoma: A retrospective comparative analysis using 5-year real-world survival data
Presenter: Andhika Rachman
Session: Poster Display
Resources:
Abstract
380P - An epidemiological analysis on the prevalence of oral cancer and its awareness among Irula tribes of South India
Presenter: Delfin Lovelina Francis
Session: Poster Display
Resources:
Abstract
381P - P16INK4 over-expression, early stages, keratinization, and surgical margin-free status are associated with better prognosis of oral squamous cell carcinoma (OSCC)
Presenter: Sumadi Lukman Anwar
Session: Poster Display
Resources:
Abstract
382P - Oral health disparities in privileged and underprivileged tribes of south India: A study of the prevalence of precancerous oral lesions
Presenter: Shanavas Palliyal
Session: Poster Display
Resources:
Abstract