Abstract 623P
Background
Cancer ranks second globally in causes of death, accounting for 21% of all fatalities. However, many types of cancer can be cured if diagnosed and treated during early stages. We propose a liquid biopsy cancer analysis method that uses deep learning and a methylation-sensitive restriction enzyme digestion followed by sequencing method to detect and classify the most common cancers worldwide at early stages.
Methods
We developed a selective methylation sensitive restriction enzyme sequencing (MRE-Seq) method combined with a prediction model based on deep neural network (DNN) learning on data from 63,266 CpG sites to identify global hypomethylation patterns. The methylation dataset was made from 96 colon cancer samples, 95 lung cancer samples, 122 gastric cancer samples, 136 breast cancer samples, and 183 control samples. To eliminate batch bias, the ANOVA test was performed during feature selection. A DNN was adopted as a classifier, and 5-fold cross validation was performed to verify the classification performance.
Results
Across four cancer types, colorectal cancer had the highest predictive performance at 0.98, followed by breast cancer at 0.97, gastric cancer at 0.96, and lung cancer at 0.93. At 95% specificity, the sensitivity for detecting early-stage cancers varied widely, with lung cancer at 50% and breast cancer at 83%. Two different metrics were used to evaluate the model's performance. The cancer classifier (performance in detecting cancer) had a sensitivity of 95.1% and a specificity of 66.7%, indicating better performance in correctly identifying cancer samples. The cancer type classifier (performance in classifying the cancer type) utilized the precision metric to evaluate the accuracy of cancer classification. Notably, breast cancer achieved the highest precision at 95.8%, followed by lung cancer at 83.3%, gastric cancer at 79.1%, and colon cancer at 69.0%.
Conclusions
The proposed classification model based on the MRE-Seq method can reliably identify cancer and normal samples and differentiate between different cancer types using only methylation information obtained from patient's blood. This approach could be used in clinical practices to help medical experts diagnose cancer earlier and at the individual level.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
580P - Efficacy and safety of dacomitinib as first-line treatment for advanced non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor <italic>(EGFR)</italic> 21L858R mutation: A multicenter, ambispective, consecutive case-series study
Presenter: Shouzheng Wang
Session: Poster Display
Resources:
Abstract
581P - The associations between afatinib-related adverse events and survival outcomes in patients with lung cancer
Presenter: Wen-Chen Tang
Session: Poster Display
Resources:
Abstract
582P - Furmonertinib treatment in patients with EGFR-mutated non-small cell lung cancer and leptomeningeal metastases: A real-world study
Presenter: Haiyang Chen
Session: Poster Display
Resources:
Abstract
583P - RHBDL2 promotes non-small cell lung cancer metastasis and osimertinib resistance by activating the RAS/MEK/ERK signaling pathway through interaction with FGFR
Presenter: jun Deng
Session: Poster Display
Resources:
Abstract
584P - Upfront aumolertinib for preventing symptomatic central nervous system(CNS) metastases in EGFR-mutant non-small cell lung cancer without baseline CNS metastasis
Presenter: Tangfeng Lv
Session: Poster Display
Resources:
Abstract
585P - Real-world outcomes in patients with non-small cell lung cancer with EGFR exon 20 insertion mutations receiving mobocertinib
Presenter: Tony S.K. Mok
Session: Poster Display
Resources:
Abstract
586P - Clinical validation of a multiplex polymerase chain reaction (mPCR) assay to identify patients (pts) with NSCLC suitable for mobocertinib treatment
Presenter: Caicun Zhou
Session: Poster Display
Resources:
Abstract
587P - Exploring the prevalence and characteristics of human epidermal growth factor receptor 2 (HER2) alterations in non-small cell lung cancer: Analysis from a Malaysian cohort
Presenter: Ning Yi Yap
Session: Poster Display
Resources:
Abstract
588P - First real-world study with HER2 ADC in treating HER2-altered non-small cell lung cancer
Presenter: Kaihua Lu
Session: Poster Display
Resources:
Abstract
590P - A retrospective study of the prevalence and clinical outcomes of KRAS G12C mutated advanced non-small cell lung cancer (NSCLC) in Australian patients (pts)
Presenter: Ben Markman
Session: Poster Display
Resources:
Abstract