Abstract 620P
Background
Cancer constitutes a major burden to global health and the critical role of early diagnosis for cancer management is self-evident. Even though various miRNA-based signatures have been developed, their clinical utilization is limited due to various reasons. In this article, we innovatively developed a signature based on pairwise expression of miRNAs (miRPs) for pan-cancer diagnosis using machine learning approach.
Methods
miRNA spectrum of 15832 patients with 13 different cancers from 10 cohorts were analyzed. 15148 patients were divided into training, validation, and test sets with a ratio of 7:2:1, while 648 patients were utilized as external test. Pairwise comparison was performed to generate miRP score, defined by the comparison between two miRNAs, in training set. Five different machine-learning (ML) algorithms (XGBoost, SVM, RandomForest, LASSO, and Logistic) were adopted for signature construction. The best ML algorithm and the optimal number of miRPs included were identified using AUC and youden index in validation. Performance of the ideal model was evaluated in test and external set based on AUC, Youden index, positive predictive value (PPV), negative predictive value (NPV), sensitivity, specificity, and accuracy. The AUC of entire cohorts was compared to previously published 25 signatures.
Results
The Random Forest approach including 31 miRPs (31-miRP) outperformed others and was retained for further evaluation. The AUC of 31-miRP ranges 0.980-1.000 in different set. Remarkably, 31-miRP exhibited advantages in differentiating different cancers from normal tissues. Moreover, 31-miRP demonstrate superiorities in detecting early-stage cancers, with AUC ranging from 0.961-0.998. Compared to previously published 25 different signatures, 31-miRP also demonstrated clear advantages. Remarkably, 31-miRP also exhibited promising capabilities in differentiating cancers from corresponding benign lesions.
Conclusions
The 31-miRP exhibited outstanding diagnostic performance, characterized by high accuracy and sensitivity, thereby holding potential as a reliable tool for cancer diagnosis at early stage. Nevertheless, its effectiveness still warrants further investigation in real-world setting in future.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
CAMS Innovation Fund for Medical Sciences (No.2021-I2M-1-050); National Natural Science Foundation for Young Scientists of China (No. 82203025).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
270P - Germline BRCA1/2 pathogenic variants in Japanese patients with prostate cancer are predictive factors for androgen receptor-axis-targeted therapy or chemotherapy for castration-resistant prostate cancer
Presenter: Shigekatsu Maekawa
Session: Poster Display
Resources:
Abstract
271P - Prostate cancer with histone modifier UTX mutations can benefit from olaparib
Presenter: NOBUHITO MURAMOTO
Session: Poster Display
Resources:
Abstract
272P - Comparison between MRI-targeted and standard biopsy for prostate cancer detection: A systematic review and meta-analysis
Presenter: Andree Kurniawan
Session: Poster Display
Resources:
Abstract
273P - The diagnostic performance of cognitive MRI-targeted biopsy in biopsy-naïve patients undergoing systematic 14-region 18-core biopsy: Do the three areas affect the results?
Presenter: Yuka Toyama
Session: Poster Display
Resources:
Abstract
274P - Index tumor location influencing early biochemical recurrence after radical prostatectomy in patients with negative surgical margins
Presenter: Jun Akatsuka
Session: Poster Display
Resources:
Abstract
275P - Prognosis of metastatic castration-resistant prostate cancer in response to chemotherapy and PSMA expression in circulating tumor cells
Presenter: Naoya Nagaya
Session: Poster Display
Resources:
Abstract
276P - Prognostic significance of p53 mutation in metastatic hormone-sensitive prostate cancer
Presenter: Lakshmi Kamala
Session: Poster Display
Resources:
Abstract
277P - Vasohibin-1 expression as a biomarker of aggressive growth in prostate ductal adenocarcinoma
Presenter: Murad Salomov
Session: Poster Display
Resources:
Abstract
278P - Full-coverage radiotherapy for prostate cancer patients with oligometastases
Presenter: Bichun Xu
Session: Poster Display
Resources:
Abstract
279P - Hypofractionated radiotherapy protocol implementation and early outcomes for prostate cancer patients: A single institution retrospective review
Presenter: Thu Nguyen
Session: Poster Display
Resources:
Abstract