Abstract 620P
Background
Cancer constitutes a major burden to global health and the critical role of early diagnosis for cancer management is self-evident. Even though various miRNA-based signatures have been developed, their clinical utilization is limited due to various reasons. In this article, we innovatively developed a signature based on pairwise expression of miRNAs (miRPs) for pan-cancer diagnosis using machine learning approach.
Methods
miRNA spectrum of 15832 patients with 13 different cancers from 10 cohorts were analyzed. 15148 patients were divided into training, validation, and test sets with a ratio of 7:2:1, while 648 patients were utilized as external test. Pairwise comparison was performed to generate miRP score, defined by the comparison between two miRNAs, in training set. Five different machine-learning (ML) algorithms (XGBoost, SVM, RandomForest, LASSO, and Logistic) were adopted for signature construction. The best ML algorithm and the optimal number of miRPs included were identified using AUC and youden index in validation. Performance of the ideal model was evaluated in test and external set based on AUC, Youden index, positive predictive value (PPV), negative predictive value (NPV), sensitivity, specificity, and accuracy. The AUC of entire cohorts was compared to previously published 25 signatures.
Results
The Random Forest approach including 31 miRPs (31-miRP) outperformed others and was retained for further evaluation. The AUC of 31-miRP ranges 0.980-1.000 in different set. Remarkably, 31-miRP exhibited advantages in differentiating different cancers from normal tissues. Moreover, 31-miRP demonstrate superiorities in detecting early-stage cancers, with AUC ranging from 0.961-0.998. Compared to previously published 25 different signatures, 31-miRP also demonstrated clear advantages. Remarkably, 31-miRP also exhibited promising capabilities in differentiating cancers from corresponding benign lesions.
Conclusions
The 31-miRP exhibited outstanding diagnostic performance, characterized by high accuracy and sensitivity, thereby holding potential as a reliable tool for cancer diagnosis at early stage. Nevertheless, its effectiveness still warrants further investigation in real-world setting in future.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
CAMS Innovation Fund for Medical Sciences (No.2021-I2M-1-050); National Natural Science Foundation for Young Scientists of China (No. 82203025).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
238P - Enfortumab-vedotin for metastatic urothelial carcinoma refractory to platinum-based chemotherapy and immune checkpoint inhibitors: A single institution experience
Presenter: Yuki Endo
Session: Poster Display
Resources:
Abstract
239P - Elevated baseline C-reactive protein is a prognostic indicator for OS in patients with metastatic non clear cell renal cell carcinoma treated with systemic therapy
Presenter: Ryuichi Mizuno
Session: Poster Display
Resources:
Abstract
240P - Efficacy and safety of first-line combination therapy with ipilimumab + nivolumab for metastatic renal cell carcinoma in a single institution in Japan
Presenter: Naoya Nagaya
Session: Poster Display
Resources:
Abstract
241P - First-line cabozantinib in metastatic renal cell carcinoma (mRCC): A real-world exploratory study from eastern India
Presenter: Tamojit Chaudhuri
Session: Poster Display
Resources:
Abstract
244P - Clinicopathologic feature and treatment outcome of metastatic non clear cell kidney cancer: A single centre experience from India
Presenter: Somnath Roy
Session: Poster Display
Resources:
Abstract
245P - The role of TGF-β in the formation of the protumor phenotype of circulating neutrophils at different stages of renal cancer
Presenter: Ilseya Myagdieva
Session: Poster Display
Resources:
Abstract
246P - Impact of renal impairment on first-line treatment in metastatic urothelial cancer
Presenter: Stephanie Wakeling
Session: Poster Display
Resources:
Abstract
247P - Adjuvant chemoradiotherapy in the management of bladder adenocarcinoma compared to multiple treatment modalities
Presenter: Othman Mohammed
Session: Poster Display
Resources:
Abstract
248P - Screening zinc homeostasis-related genes identifies metallothionein 1H (MT1H) as a potential prognostic biomarker in clear cell renal cell carcinoma (ccRCC)
Presenter: Eyad Al Masoud
Session: Poster Display
Resources:
Abstract
249P - The prognostic utility of Progestogen associated Endometrial protein (PAEP) gene expression in clear cell renal cell carcinoma (ccRCC)
Presenter: Leen Lataifeh
Session: Poster Display
Resources:
Abstract