Abstract 310P
Background
This study investigated site-specific differences in clinical factors for recurrence in patients who were newly diagnosed and treated for endometrial cancer. Several machine learning algorithms were adapted to predict the recurrence of patients.
Methods
Electronic medical records’ data were retrieved from January 2006 to December 2018 for patients who were diagnosed with endometrial cancer at the XXX in Korea. Recurrence sites were classified as local, regional, or distant. We employed various machine learning algorithms, including logistic regression models (LR), random forest (RF), support vector machine (SVM) and artificial neural network (ANN), and assessed their prediction performances by cross-validation. Since our problem is an imbalanced multi-classification problem, the average score of AUC (area under curve) for each class obtained from one-vs-rest strategy was used for evaluating each machine learning algorithm.
Results
The data of 611 patients were selected for analysis; there were 20, 12, and 25 local, regional, and distant recurrence, respectively, and 554 patients had no recurrence. Random forest showed the best performance (0.8587) in prediction accuracy. Other algorithms followed with 0.7790 (LR), 0.7398 (ANN) and SVM (0.7119). The most important variables in Random Forest were invasion depth, age and size, in order.
Conclusions
We identified different risk factors specific for each type of recurrence site. Using these risk factors, we suggest that individually tailored adjuvant treatments be introduced for patients.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
39P - Prognostic significance of hypoxic microenvironment biomarkers in invasive ductal breast cancer
Presenter: Sungmin Kang
Session: Poster Display
Resources:
Abstract
40P - Intra-tumoral CD3, CD4, and CD8 as prognostic biomarkers in Asian breast cancer
Presenter: Jia Wern Pan
Session: Poster Display
Resources:
Abstract
41P - Brown fat activation demonstrated on FDG PET/CT predicts survival outcome
Presenter: Sonya Park
Session: Poster Display
Resources:
Abstract
42P - A promising anticancer drug for triple-negative breast cancer: OZ-001 suppresses tumor growth by dual targeting STAT3 and calcium signaling
Presenter: Jisun Kim
Session: Poster Display
Resources:
Abstract
43P - Performance evaluation of a combined risk model for breast cancer risk prediction in Indonesian population (TRIP Study)
Presenter: Marco Wijaya
Session: Poster Display
Resources:
Abstract
44P - Pathological complete response to neoadjuvant chemotherapy and outcomes in Her-2 negative locally advanced breast cancer
Presenter: Amrith Patel
Session: Poster Display
Resources:
Abstract
45P - Demographic determinants of pathological complete response after neoadjuvant chemotherapy in breast cancer
Presenter: Anvesh Dharanikota
Session: Poster Display
Resources:
Abstract
46P - Predicting toxicity following cancer chemotherapy by detecting transporter gene ABCB1 (C1236T, G2677T/A, C3435CT) polymorphism in breast cancer patients receiving chemotherapy with anthracycline and taxane either sequentially or concomitantly
Presenter: Tanuma Mistry
Session: Poster Display
Resources:
Abstract
47P - Sequencing of chemotherapy and surgery among older triple-negative and HER2-positive breast cancer patients with comorbidities
Presenter: Anvesh Dharanikota
Session: Poster Display
Resources:
Abstract
48P - The impact of preoperative axillary ultrasound on the false negative rate of sentinel lymph node biopsy in post neoadjuvant chemotherapy breast cancer patients
Presenter: Byshetty Rajendar
Session: Poster Display
Resources:
Abstract