Abstract 310P
Background
This study investigated site-specific differences in clinical factors for recurrence in patients who were newly diagnosed and treated for endometrial cancer. Several machine learning algorithms were adapted to predict the recurrence of patients.
Methods
Electronic medical records’ data were retrieved from January 2006 to December 2018 for patients who were diagnosed with endometrial cancer at the XXX in Korea. Recurrence sites were classified as local, regional, or distant. We employed various machine learning algorithms, including logistic regression models (LR), random forest (RF), support vector machine (SVM) and artificial neural network (ANN), and assessed their prediction performances by cross-validation. Since our problem is an imbalanced multi-classification problem, the average score of AUC (area under curve) for each class obtained from one-vs-rest strategy was used for evaluating each machine learning algorithm.
Results
The data of 611 patients were selected for analysis; there were 20, 12, and 25 local, regional, and distant recurrence, respectively, and 554 patients had no recurrence. Random forest showed the best performance (0.8587) in prediction accuracy. Other algorithms followed with 0.7790 (LR), 0.7398 (ANN) and SVM (0.7119). The most important variables in Random Forest were invasion depth, age and size, in order.
Conclusions
We identified different risk factors specific for each type of recurrence site. Using these risk factors, we suggest that individually tailored adjuvant treatments be introduced for patients.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
309P - Expression of estrogen receptor is a negative predictive biomarker for immunotherapy with lenvatinib plus pembrolizumab for advanced endometrial cancer with pMMR
Presenter: Hiroyuki Fujii
Session: Poster Display
Resources:
Abstract
311P - Circulating cytokines in the differential diagnosis of endometrial cancer
Presenter: Tatyana Abakumova
Session: Poster Display
Resources:
Abstract
312P - Molecular and genetic features of squamous cell carcinoma of vulvar cancer depending on HPV status
Presenter: Visola Navruzova
Session: Poster Display
Resources:
Abstract
313P - Efficacy and safety of oral metronomic chemotherapy in recurrent refractory advanced gynaecological cancer: Experience from regional cancer center of eastern India
Presenter: Ranti Ghosh
Session: Poster Display
Resources:
Abstract
314P - Perioperative outcomes in advanced epithelial ovarian cancer treated with neoadjuvant bevacizumab and chemotherapy: Real-world experience from an Indian cancer centre
Presenter: Upasana Palo
Session: Poster Display
Resources:
Abstract
315P - Real-world experience of niraparib as maintenance therapy in newly diagnosed advanced ovarian cancer: A single-center retrospective study
Presenter: Wenxin Liu
Session: Poster Display
Resources:
Abstract
316P - First evidence of olaparib maintenance therapy in patients with newly diagnosed BRCA wild-type ovarian cancer: A real-world multicenter study
Presenter: Jing Li
Session: Poster Display
Resources:
Abstract
317P - Attitudes of Israeli gynecologists towards risk reduction salpingo-oophorectomy at hysterectomy for benign conditions and the use of hormonal therapy
Presenter: wisam Assaf
Session: Poster Display
Resources:
Abstract
319P - Survival prediction for ovarian cancer patients from Taiwan cancer registry data
Presenter: Tzu-Pin Lu
Session: Poster Display
Resources:
Abstract
320P - Treatment patterns and outcomes in Indian patients with advanced ovarian cancer: A single center experience
Presenter: Pushpendra Hirapara
Session: Poster Display
Resources:
Abstract