Abstract 310P
Background
This study investigated site-specific differences in clinical factors for recurrence in patients who were newly diagnosed and treated for endometrial cancer. Several machine learning algorithms were adapted to predict the recurrence of patients.
Methods
Electronic medical records’ data were retrieved from January 2006 to December 2018 for patients who were diagnosed with endometrial cancer at the XXX in Korea. Recurrence sites were classified as local, regional, or distant. We employed various machine learning algorithms, including logistic regression models (LR), random forest (RF), support vector machine (SVM) and artificial neural network (ANN), and assessed their prediction performances by cross-validation. Since our problem is an imbalanced multi-classification problem, the average score of AUC (area under curve) for each class obtained from one-vs-rest strategy was used for evaluating each machine learning algorithm.
Results
The data of 611 patients were selected for analysis; there were 20, 12, and 25 local, regional, and distant recurrence, respectively, and 554 patients had no recurrence. Random forest showed the best performance (0.8587) in prediction accuracy. Other algorithms followed with 0.7790 (LR), 0.7398 (ANN) and SVM (0.7119). The most important variables in Random Forest were invasion depth, age and size, in order.
Conclusions
We identified different risk factors specific for each type of recurrence site. Using these risk factors, we suggest that individually tailored adjuvant treatments be introduced for patients.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
270P - Germline BRCA1/2 pathogenic variants in Japanese patients with prostate cancer are predictive factors for androgen receptor-axis-targeted therapy or chemotherapy for castration-resistant prostate cancer
Presenter: Shigekatsu Maekawa
Session: Poster Display
Resources:
Abstract
271P - Prostate cancer with histone modifier UTX mutations can benefit from olaparib
Presenter: NOBUHITO MURAMOTO
Session: Poster Display
Resources:
Abstract
272P - Comparison between MRI-targeted and standard biopsy for prostate cancer detection: A systematic review and meta-analysis
Presenter: Andree Kurniawan
Session: Poster Display
Resources:
Abstract
273P - The diagnostic performance of cognitive MRI-targeted biopsy in biopsy-naïve patients undergoing systematic 14-region 18-core biopsy: Do the three areas affect the results?
Presenter: Yuka Toyama
Session: Poster Display
Resources:
Abstract
274P - Index tumor location influencing early biochemical recurrence after radical prostatectomy in patients with negative surgical margins
Presenter: Jun Akatsuka
Session: Poster Display
Resources:
Abstract
275P - Prognosis of metastatic castration-resistant prostate cancer in response to chemotherapy and PSMA expression in circulating tumor cells
Presenter: Naoya Nagaya
Session: Poster Display
Resources:
Abstract
276P - Prognostic significance of p53 mutation in metastatic hormone-sensitive prostate cancer
Presenter: Lakshmi Kamala
Session: Poster Display
Resources:
Abstract
277P - Vasohibin-1 expression as a biomarker of aggressive growth in prostate ductal adenocarcinoma
Presenter: Murad Salomov
Session: Poster Display
Resources:
Abstract
278P - Full-coverage radiotherapy for prostate cancer patients with oligometastases
Presenter: Bichun Xu
Session: Poster Display
Resources:
Abstract
279P - Hypofractionated radiotherapy protocol implementation and early outcomes for prostate cancer patients: A single institution retrospective review
Presenter: Thu Nguyen
Session: Poster Display
Resources:
Abstract