Abstract 204P
Background
Although neoadjuvant chemoradiotherapy followed by surgery is the standard treatment for esophageal cancer patients, most patients are unable to achieve pathological complete response with neoadjuvant therapy, resulting in poor outcomes. The aim of this study is to develop a method for selecting patients who can achieve pathological complete response through pre-neoadjuvant therapy chest-enhanced CT scans.
Methods
Two hundreds and one patients with esophageal cancer were enrolled and divided into a training set and a testing set in a 7:3 ratio. Radiomics features of intra-tumoral and peritumoral images were extracted from preoperative chest-enhanced CT scans of these patients. The features were dimensionally reduced in two steps. The selected intra-tumoral and peritumoral features, including marginal (with a distance of 0-3mm from the tumor) and adjacent (with a distance of 3-6mm from the tumor) ROI, were used to build models with four machine learning classifiers, including Support Vector Machine, XG-Boost, Random Forest and Naive Bayes. Models with satisfied accuracy and stability levels were considered to perform well. Finally, the performance of these well-performing models on the testing set was displayed using ROC curves.
Results
Among the 16 models, the best-performing models were the integrated (intra-tumoral and peritumoral features)-XGBoost and integrated-random forest models, which had average ROC AUCs of 0.906 and 0.918, respectively, with relative standard deviations (RSDs) of 6.26 and 6.89 in the training set. In the testing set, the AUCs were 0.845 and 0.871, respectively. There was no significant difference in the ROC curves between the two models. Table: 204P
The performance of the selected models on the testing set
Model | AUC (95% CI) | Specificity | Sensitivity |
Integrated-XGBoost | 0.845 (0.764, 0.928) | 0.864 | 0.777 |
Original-XGBoost | 0.759 (0.660, 0.857) | 0.900 | 0.592 |
Integrated-Random Forest | 0.871 (0.796, 0.946) | 0.682 | 0.933 |
Original-Random Forest | 0.795 (0.703, 0.887) | 0.825 | 0.673 |
Adjacent-Random Forest | 0.769 (0.671, 0.868) | 0.886 | 0.533 |
Integrated-Support Vector Machine | 0.719 (0.613, 0.825) | 0.795 | 0.622 |
Conclusions
The addition of peritumoral radiomics features to the radiomics analysis may improve the predictive performance of pathological response for esophageal cancer patients to neoadjuvant chemoradiotherapy.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
485P - LDCT lung cancer screening of never-smokers meta-analysis subgroup analysis: Adenocarcinoma is the highly predictive histology identified in never-smokers
Presenter: Sai-Hong Ou
Session: Poster Display
Resources:
Abstract
486P - Fiscal feasibility and implications of integrating lung cancer screening into Hong Kong’s healthcare system
Presenter: Herbert Ho Fung Loong
Session: Poster Display
Resources:
Abstract
487P - Evaluating the performance of the USPSTF lung cancer screening guidelines in an Asian population of lung cancer patients
Presenter: Jian Wei Tan
Session: Poster Display
Resources:
Abstract
488P - Pulmonary ground glass opacity lesions: Immune ecosystem and its clinical relevances of early-stage lung adenocarcinoma
Presenter: Shensi Shen
Session: Poster Display
Resources:
Abstract
489TiP - BGB-LC-202 (NCT05577702): Phase II Umbrella study of tislelizumab (TIS) monotherapy and TIS-based immunotherapy combinations +/- chemotherapy (CT) as neoadjuvant treatment in Chinese patients (pts) with resectable stage II to IIIA non-small cell lung cancer (NSCLC)
Presenter: Wentao Yu
Session: Poster Display
Resources:
Abstract
491P - Furmonertinib as adjuvant therapy for elderly patients in resected EGFR-mutated non-small cell lung cancer: A double-center, real-world experience
Presenter: Ziheng Wu
Session: Poster Display
Resources:
Abstract
492P - Penpulimab-based combination neoadjuvant/adjuvant therapy for patients with resectable locally advanced non-small cell lung cancer: Preliminary results from a phase II study (ALTER-L043)
Presenter: Changli Wang
Session: Poster Display
Resources:
Abstract
493P - The prognostic value of 4L lymph node dissection in left-sided operable non-small cell lung cancer: A systematic review and meta-analysis
Presenter: Lei Peng
Session: Poster Display
Resources:
Abstract
495P - Intrinsic STING of CD8+T cells regulates self-metabolic reprogramming and exerts anti-tumor effects
Presenter: Qiuli Xu
Session: Poster Display
Resources:
Abstract
496P - Fruquintinib plus sintilimab in patients (pts) with advanced non-small cell lung cancer (NSCLC) with PD-L1-positive expression: A multicenter, single-arm phase II study
Presenter: Shun Lu
Session: Poster Display
Resources:
Abstract