NEW BREAST CANCER CLASSIFICATION: TRADITIONAL PATHOLOGY AND MOLECULAR SUBTYPES

Dr Magali LACROIX-TRIKI, pathologist, Gustave Roussy Cancer Campus
Villejuif, FRANCE

Cape Town, South Africa, 13-14 February 2020
ESMO preceptorship on breast cancer
DISCLOSURE OF INTEREST

Consultant:
- Roche
- Roche Diagnostics
- Myriad genetics

Shareholder and Scientific Advisory Board: MYPL
OUTLINE

• Traditional histopathological classification
• Molecular classification
 • Luminal ER+ BC
 • HER2+ BC
 • Triple negative BC
• Conclusion and perspectives
TRADITIONAL HISTOPATHOLOGY

Early breast cancer

Key-points of the pathological report

• Diagnosis of invasive carcinoma: histological type and grade
• Number of tumors, tumor size, nodal status (pTNM, AJCC 8th edition)
• Lymphovascular invasion
• Associated lesions: in situ component, Paget disease…
• Surgical margins
• Prognostic markers
 • Histopathological
 • Molecular
• Predictive biomarkers

After the coffee break!!
HISTOLOGICAL TYPE

Invasive (ductal) of no special type

- 70-80% of BC
- Reproduce ± ductal architecture
- Broad range of morphological pattern...
- ... and a lot of variants!
 - Carcinoma with medullary features
 - Carcinoma with neuroendocrine differentiation
 - Rares variants (sebaceous, oncocytic, clear cells, lipid rich)

- 70-80% ER+
- 10-15% HER2+
- 10-15% Triple negative
Invasive lobular carcinoma

- 10-15 % of BC
- multicentric, bilateral
- dyscohesive cells, E-cadherin loss
- Several variants

Essential and desirable diagnostic criteria

Classic ILC

Essential: an IBC composed of dispersed or linear dyscohesive cells with low- to intermediate-nuclear-grade morphology and a low mitotic count; ER immunoreactivity is high and HER2 is negative/non-amplified.

Desirable: coexisting lobular neoplasia; E-cadherin loss may be useful.

Pleomorphic ILC

Essential: intermediate-high or high nuclear grade/pleomorphism.

- ~90% ER+
- 5% HER2+
- 5% Triple negative
INVASIVE LOBULAR CARCINOMA

INVASIVE LOBULAR CARCINOMA

C. Desmedt et al. JCO 2016
HISTOLOGICAL TYPE

Other special subtypes

- **Tubular**
 - Very good prognosis
 - **ER+ HER2-**

- **Cribriform**
 - **ER+, 5% HER2+**

- **Mucinous**
 - **Triple negative, some HER2+**

- **Mucinous cystadenocarcinoma**

- **Micropapillary**
 - **ER+, 20% HER2+**

- **With apocrine differentiation**
 - **ER-, AR+, HER2+ or -**

- **Metaplastic (several subtypes, some low-grade)**

- **Papillary tumors**

- **Neuroendocrine (pure) tumors**
 - **ER+, HER2- (some HER2+)**

Very good prognosis
HISTOLOGICAL TYPE

Rare and salivary gland-type tumours

- Acinic cell carcinoma
- Adenoid cystic carcinoma \(\text{t}(6;9)\) MYB-NFIB, MYBL1, ampl MYB
- Secretory carcinoma \(\text{t}(12;15)\) ETV6-NTRK3
- Mucoepidermoid carcinoma \(\text{MAML2}\)
- Polymorphous carcinoma

Tall cell carcinoma with reversed polarity \(\text{IDH2 mutation}\)

- Rare
- Triple negative...
- …but good prognosis!
- hallmark genomic alteration
HISTOLOGICAL GRADE

Elston and Ellis

• Glandular differentiation (tubule formation)
 - >75% : score 1
 - 10-75% : score 2
 - <10% : score 3

• Nuclear atypia (pleomorphism)
 - Small, regular uniform cells: score 1
 - Moderate increase in size and variability: score 2
 - Marked variation: score 3

• Mitotic activity (depending on count/mm²): score 1 to 3
OUTLINE

• Traditional histopathological classification
• Molecular classification
 • Luminal ER+ BC
 • HER2+ BC
 • Triple negative BC
• Conclusion and perspectives
MOLECULAR TAXONOMY OF BREAST CANCER

C Perou & T Sorlie
Significant Prognostic Value of Intrinsic classification
INTRINSIC MOLECULAR CLASSIFICATION

ER+ Tumors

Luminal A
- ≈ 60% of breast cancers
- High expression of ER
- High expression of genes regulated by ER (PR, GATA-3, FOX A1, etc.)
- Low expression of genes linked to proliferation
- Low prevalence of *TP53* mutations: 13%

Luminal B
- ≈ 20% of breast cancers
- Lower expression of ER
- Lower expression of genes regulated by ER (PR, GATA-3, FOX A1, etc.)
- High expression of genes linked to proliferation
- High prevalence of *TP53* mutations: 66%
SURROGATE DEFINITION OF LUMINAL BC BY IHC

Luminal A: ER+ PR+ (>20%) Ki67<14% HER2-

Luminal B: ER+ PR≤20% Ki67<14% or ER+ HER2+ Ki67>14%

Prat A et al. JCO 2013
LUMINAL A

- grade I or II
- ER + ≥ 1% (10%)
- PR + ≥ 1% (>20%)
- HER2 - (0, 1+, 2+ non-amplified)
- Ki-67 low (< 15-20%)
LUMINAL B

- grade II or III
- ER + ≥ 1% (10%)
- PR + ≤ 20%
- HER2 – (0, 1+, 2+ non-amplified)
- Ki67 high (≥ 15-20%)
LUMINAL B HER2+

- grade II or III
- ER + ≥ 1% (10%)
- PR + ≥ 10% or ≤ 20%
- HER2 + (2+ amplified or 3+)
- whatever the Ki67 level

Thanks to © Gaëtan MacGrogan...
INTRINSIC MOLECULAR CLASSIFICATION

<table>
<thead>
<tr>
<th>HER2</th>
<th>Basal</th>
</tr>
</thead>
<tbody>
<tr>
<td>• ≈ 10% of breast cancers</td>
<td>• ≈ 10% of breast cancers</td>
</tr>
<tr>
<td>• No expression of ER</td>
<td>• No expression of ER</td>
</tr>
<tr>
<td>• High expression of genes located in the ERBB2 amplicon (GRB7, etc..)</td>
<td>• Expression of basal cell genes: high molecular weight cytokeratins (CK5, CK14, CK17), laminin, FAB7, etc.</td>
</tr>
<tr>
<td>• High expression of genes linked to proliferation</td>
<td>• High expression of genes linked to proliferation</td>
</tr>
<tr>
<td>• High prevalence of TP53 mutations: 71%</td>
<td>• High prevalence of TP53 mutations: 82%</td>
</tr>
</tbody>
</table>
MORPHOLOGY OF BASAL LIKE TUMORS

- Histological grade III
- Massive architecture
- High mitotic index

- Pushing borders
- Dense lymphocytic infiltrate
- Necrosis
- Central fibrosis
IHC SURROGATE DEFINITION OF BASAL LIKE

- ER < 1%
- PR < 1%
- HER2 Score 0, 1+, 2+ non amplified
- CK5/6 or CK14+
- Or EGFR+
CLINICAL ASPECTS OF BASAL LIKE TUMORS

- Often young patients
- Grade III tumors
- Preferential metastatic sites: lung, brain
- >95% metastatic relapses before year 6 after diagnosis

Foulkes et al., NEJM 2010
Basal like breast cancers

→ Basal like BC encompasses several histological subtypes with different prognosis

Basal like BC encompasses several histological subtypes with different prognosis.

Fibromatosis-like carcinoma

Secretory carcinoma

Metaplastic carcinomas

Poor prognosis

Poor prognosis

Good prognosis

Triple-negative breast cancer: the importance of molecular and histologic subtyping, and recognition of low-grade variants

Fresia Pareja¹, Felipe C Geyer¹, Caterina Marchiò², Kathleen A Burke¹, Britta Weigelt¹ and Jorge S Reis-Filho¹
MOLECULAR CLASSIFICATION(S) OF TNBC

Lehmann BD et al., PLOS one 2016

- **BL1: Basal Like 1**
 - Cell cycle/proliferation, DNA damage (*BRCA1*)
- **BL2: Basal like 2**
 - Proliferation, growth factors (EGF, MET, IGF1R, Wnt), glycolysis
- **LAR: Luminal Androgen Receptor**
 - Steroid metabolism, AR, FOXA1, *PIK3CA*mut
- **M: Mesenchymal like**
 - Cell motility, EMT, *PIK3CA*mut
- **MSL: Mesenchymal Stem like**
 - EMT, growth factors (EGFR, PDGF), low proliferation, stem cells, claudinlow, *PIK3CA*mut, metaplastic
- **IM: immunomodulatory**
MOLECULAR CLASSIFICATION(S) OF TNBC
Burstein MD et al., Clin Cancer Res 2015

- **BLIA: Basal Like Immune Activated**
 Upregulation of immune/cytokine genes, activated STAT pathway, \(CDK1^{\text{ampl}} \)

- **BLIS: Basal like Immune Supressed**
 Downregulation of immune/cytokine, expression of SOX transcription factors, \(FGFR2^{\text{ampl}} \)

- **LAR: Luminal Androgen Receptor**
 AR, ESR1, ERBB4, FOXA1, \(CCND1^{\text{ampl}} \)

- **MES: Mesenchymal like**
 Low cell cycle, DNA damage, hereditary BC, IGF1, PDGFR, claudin\text{low}, \(EGFR^{\text{ampl}} \)
IN SUMMARY...
Towards an integrative BC classification

→ Combine histopathology and molecular classifications in order to better understand BC heterogeneity and better personalize treatment!

• « traditional » pathology is the cornerstone of BC management
 - histological type and grade
 - pTNM (AJCC)
 - margin assessment
 - prognostic and predictive markers

• Molecular tools
 - better stratify patients with regards to outcome
 - identify new therapeutic targets
TAKE-HOME MESSAGES

<table>
<thead>
<tr>
<th>Intrinsic subtype</th>
<th>Clinicopathological surrogate definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminal A</td>
<td>'Luminal A-like’
ER-positive
HER2-negative
Ki67 low<sup>b</sup>
PgR high<sup>b</sup>
Low-risk molecular signature (if available)</td>
</tr>
<tr>
<td>Luminal B</td>
<td>'Luminal B-like (HER2-negative)'
ER-positive
HER2-negative
and either
Ki67 high or
PgR low
High-risk molecular signature (if available)</td>
</tr>
<tr>
<td>Luminal B</td>
<td>'Luminal B-like (HER2-positive)'
ER-positive
HER2-positive
Any Ki67
Any PgR</td>
</tr>
<tr>
<td>HER2</td>
<td>'HER2-positive (non-luminal)'
HER2-positive
ER and PgR absent</td>
</tr>
<tr>
<td>'Basal-like'</td>
<td>'Triple-negative'
ER and PgR absent<sup>c</sup>
HER2-negative<sup>c</sup></td>
</tr>
</tbody>
</table>

SPECIAL ARTICLE

Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†

F. Cardoso¹, S. Kyriakides², S. Ohno³, F. Penault-Llorca^{4,5}, P. Poortmans^{6,7}, I. T. Rubio⁸, S. Zackrisson² & E. Senkus⁹, on behalf of the ESMO Guidelines Committee²

For the purpose of prognostication and treatment decision making, tumours should be grouped into surrogate intrinsic subtypes, defined by routine histology and IHC data [III, A]
THANKS!

Classification challenge…
…it’s all about the lonely, mismatched salad!