“Systemic treatment in early and advanced gastric cancer”

Andrés Cervantes
Professor of Medicine
Classical approach to localised gastric cancer

- Surgical resection
- Pathology assessment and estimation of risk
- Treatment based upon classical TNM stage
- Postoperative chemotherapy of doubtful versus no value
- Postoperative chemoradiation
Meta-analysis of trials involving adjuvant chemotherapy versus surgery alone for gastric cancer-1

<table>
<thead>
<tr>
<th>Meta-analysis</th>
<th>Year</th>
<th>No. trials</th>
<th>No. pts</th>
<th>Odds Ratio</th>
<th>95% CI</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hermanns (1)</td>
<td>1993</td>
<td>11</td>
<td>2096</td>
<td>0.88</td>
<td>0.78-1.08</td>
<td>No benefit</td>
</tr>
<tr>
<td>J Clin Oncol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earle (2)</td>
<td>1999</td>
<td>13</td>
<td>1990</td>
<td>0.80</td>
<td>0.66–0.97</td>
<td>Small survival benefit In N+ patients</td>
</tr>
<tr>
<td>Eur J Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mari (3)</td>
<td>2000</td>
<td>20</td>
<td>3658</td>
<td>0.82</td>
<td>0.75–.89</td>
<td>Small survival benefit</td>
</tr>
<tr>
<td>Ann Oncol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Janunger (4)</td>
<td>2002</td>
<td>21</td>
<td>3962</td>
<td>0.84</td>
<td>0.74–0.96</td>
<td>Very heterogeneous group of trials</td>
</tr>
<tr>
<td>Eur J Surg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Western</td>
<td></td>
<td></td>
<td></td>
<td>0.96</td>
<td>0.83–1.12</td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td></td>
<td></td>
<td></td>
<td>0.58</td>
<td>0.44–076</td>
<td></td>
</tr>
</tbody>
</table>

Meta-analysis of trials involving adjuvant chemotherapy *versus* surgery alone for gastric cancer-2

<table>
<thead>
<tr>
<th>Meta-analysis</th>
<th>Year</th>
<th>No. trials</th>
<th>No. pts</th>
<th>Odds Ratio</th>
<th>95% CI</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhao et al. (1) Cancer Investigation</td>
<td>2008</td>
<td>15</td>
<td>3212</td>
<td>0.90</td>
<td>0.84-0.96</td>
<td>Marginal, though significant benefit P: 0.001</td>
</tr>
<tr>
<td>Liu et al. (2) Eur J Surg Oncol</td>
<td>2008</td>
<td>19</td>
<td>2286</td>
<td>0.85</td>
<td>0.80-0.90</td>
<td>Marginal, though significant benefit P<0.0001</td>
</tr>
<tr>
<td>Gastric Group (3) JAMA</td>
<td>2010</td>
<td>17</td>
<td>3871</td>
<td>0.82</td>
<td>0.76-090</td>
<td>P<0.001</td>
</tr>
</tbody>
</table>

Why has adjuvant chemotherapy failed to show any positive effect after surgery in gastric cancer?

- Non standard surgery
- High risk of local relapse
- Chemotherapy nor very active in advanced disease: Complete response rate less than 10%
- Heterogeneous samples, low size samples, most patients n-
- Inadequate statistical design
- Prolonged and slow accrual
Overall survival estimate after any chemotherapy or surgery alone truncated at 10 years

Redrawn from The Gastric Group. JAMA 2010;303:1729–37
Adjuvant capecitabine plus oxaliplatin for gastric cancer after D2 gastrectomy versus surgery alone: 5-year follow-up of a randomised phase III trial

Adjuvant capecitabine plus oxaliplatin for gastric cancer after D2 gastrectomy versus surgery alone: 5-year follow-up of a randomised phase III trial

The role of radiation in the postoperative setting: Adjuvant chemoradiotherapy for gastric cancer after surgery versus surgery alone: A randomised Phase III Trial

Study design

SURGERY

↓

STRATIFICATION

T 1–4
NODES
0, 1–3, >3

CT+ CT-RT + CT

NO TREATMENT

Adjuvant chemoradiotherapy for gastric cancer after surgery versus surgery alone: A randomised Phase III Trial

Figure 2. Relapse-free Survival among All Eligible Patients, According to Treatment-Group Assignments.
Adjuvant chemoradiotherapy for gastric cancer after surgery versus surgery alone: A randomised Phase III Trial

Figure 1. Overall Survival among All Eligible Patients, According to Treatment-Group Assignment.

Adjuvant chemoradiotherapy for gastric cancer after surgery versus surgery alone: Long term data of a randomised Phase III Trial

Figure 2. (A) Overall survival by arm; (B) relapse-free survival by arm. FU, fluorouracil; RT, radiotherapy.
The role of Radiation in the Postoperative Setting
Adjuvant Cisplatin and Capecitabine versus Chemoradiation for Gastric Cancer after Surgery: A Randomized phase III Trial

The role of radiation in the postoperative setting: Adjuvant cisplatin and capecitabine versus chemoradiation for gastric cancer after surgery: A randomised Phase III Trial

Table 3. Pattern of Recurrence

<table>
<thead>
<tr>
<th>Pattern of Recurrence</th>
<th>XP Arm</th>
<th>XP/XRT/XP Arm</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locoregional recurrence†</td>
<td>19</td>
<td>8.3</td>
<td>11</td>
</tr>
<tr>
<td>Distant metastasis‡</td>
<td>56</td>
<td>24.6</td>
<td>47</td>
</tr>
</tbody>
</table>

Abbreviations: XP, capecitabine plus cisplatin; XRT, radiotherapy with capecitabine.

The role of Radiation in the Postoperative Setting

Adjuvant Cisplatin and Capecitabine versus Chemoradiation for Gastric Cancer after Surgery: A Randomized phase III Trial

Figure 2. Disease-free survival. XP, capecitabine plus cisplatin; XPRT, concurrent chemoradiotherapy with capecitabine plus cisplatin.

Figure 3. Overall survival. XP, capecitabine plus cisplatin; XPRT, concurrent chemoradiotherapy with capecitabine plus cisplatin.

The role of radiation in the postoperative setting: Adjuvant cisplatin and capecitabine versus chemoradiation for gastric cancer after surgery: A randomised Phase III Trial

Localised gastric cancer: Aims of neoadjuvant therapy

- To increase R0 resection rate
- Early treatment of micrometastases
- To reduce locoregional relapses
- Biological studies
Eligible patients:
- Adenocarcinoma of the stomach or lower third of the oesophagus (from 1999), suitable for curative resection
- Non-metastatic disease
- Stage II or greater

Chemotherapy (ECF):
Epirubicin 50 mg/m2, IV day 1
Cisplatin 60 mg/m2, IV day 1
5-FU 200 mg/m2/day, continuous infusion, days 1-21
(cycles repeated every 3 weeks)

Primary
Overall survival

Secondary
Progression-free survival
Surgical resectability
Quality of Life

Recruitment: July 1994-April 2002

MAGIC Trial results

PFS*
- Logrank p-value = 0.0001
- Hazard Ratio = 0.66
 (95% CI 0.53 - 0.81)

Overall
- Logrank p-value = 0.009
- Hazard Ratio = 0.75
 (95% CI 0.60 - 0.93)

<table>
<thead>
<tr>
<th>2 year survival</th>
<th>5 year survival</th>
<th>Median survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC</td>
<td>50%</td>
<td>36%</td>
</tr>
<tr>
<td>S</td>
<td>41%</td>
<td>23%</td>
</tr>
</tbody>
</table>

Benefit to CSC arm
- 9% | 13% | 4 mo |

- On multivariate analysis, treatment effect unchanged after adjustment for age, performance status, site of primary and gender
- Hazard ratio for death
 - Adjusted: 0.74 (95% CI: 0.59-0.93)
 - Unadjusted: 0.75

Summary of trials of perioperative chemotherapy for localised gastric cancer

<table>
<thead>
<tr>
<th>Trial</th>
<th>CT</th>
<th>No. pts control</th>
<th>No. pts CT</th>
<th>5-year survival control</th>
<th>5-year survival CT</th>
<th>HR (CI at 95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cunningham N Eng J Med 2006</td>
<td>ECF</td>
<td>253</td>
<td>250</td>
<td>23%</td>
<td>36 %</td>
<td>0.75 (0.60-0.93)</td>
</tr>
<tr>
<td>Ychou J Clin Oncol 2011</td>
<td>CDDP 5-FU</td>
<td>111</td>
<td>113</td>
<td>24%</td>
<td>38%</td>
<td>0.69 (0.50-0.95)</td>
</tr>
</tbody>
</table>

Neoadjuvant chemotherapy in gastric cancer: Conclusions

- Perioperative chemotherapy:
 - Induces downstaging
 - May increase the R0 resection rate
 - Prolongs disease free survival
 - Improves overall survival

- Evidence level I based upon 2 well designed and properly conducted randomised trials
- Preoperative therapy is better tolerated than postoperative
- Localised gastric cancer requires a multidisciplinary team approach
- Further research on biological predictive factors is needed
- Radiotherapy should be considered experimental
Currently recommended approach to localised gastric cancer

- Clinical assessment and staging
- Multidisciplinary team discussion
- Preoperative treatment in all patients with clinical stage II and III
- Surgical resection after chemotherapy
- Pathology assessment and estimation of risk
- Postoperative chemotherapy if tolerated
- Participation in trials
Treatment for localised gastric cancer: What is standard of care?

Algorithm for the management of gastric cancer

- Operable Stage T1N0
 - Consider endoscopic/limited resection
 - Preoperative chemotherapy
 - Surgery
 - Post-operative chemotherapy
- Operable Stage >T1N0
 - Operable Stage >T1N0
 - Surgery
 - Adjuvant chemoradiation
 - Adjuvant chemotherapy

Treatment for localised gastric cancer: Relevant experimental questions

- The addition of Bevacizumab in the neoadjuvant treatment of gastric cancer
- Should Docetaxel-based scheduled should be used in the neoadjuvant treatment of gastric cancer
- The addition of Radiotherapy in the neoadjuvant treatment of gastric cancer
Histologically confirmed, resectable (MDT review) stage Ib-IV adenocarcinoma of the lower oesophagus, OGJ or stomach

Randomised 1:1

ECX
- 3 cycles
- 5-6 week break
- Surgery
- 6-10 week break
- ECX
 - 3 cycles

ECX + Bevacizumab
- ECX + Bevacizumab
 - 3 cycles
- 6 doses

Chemotherapy regimens
- 21-day cycles

ECX
- Epirubicin 50mg/m² IV on day 1
- Cisplatin 60mg/m² IV on day 1
- Capecitabine 1250mg/m² PO daily

ECX + Bevacizumab
- Bevacizumab 7.5mg/kg IV on day 1 added to each ECX cycle
472 deaths (233 ECX, 239 ECX+B) have been observed

- Median follow-up is 33 months in both arms

Overall survival

<table>
<thead>
<tr>
<th></th>
<th>ECX</th>
<th>ECX+B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median OS</td>
<td>33.97 months</td>
<td>34.46 months</td>
</tr>
<tr>
<td>Hazard Ratio</td>
<td>1.067</td>
<td></td>
</tr>
<tr>
<td>(95% CI)</td>
<td>(0.8911 to 1.279)</td>
<td></td>
</tr>
<tr>
<td>Log-rank p-value</td>
<td>0.4784</td>
<td></td>
</tr>
</tbody>
</table>

3-year overall survival (95% CI)

<table>
<thead>
<tr>
<th></th>
<th>ECX</th>
<th>ECX+B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>48.9% (43.6% to 53.8%)</td>
<td>47.6% (42.3% to 52.7%)</td>
</tr>
</tbody>
</table>
FLOT4 Study Design

- Gastric cancer or adenocarcinoma of the gastroesophageal junction type I-III
- Medically and technically operable stages
- T2-4, every N, M0 or every T, N+, M0

Primary endpoint Phase II (n=300): rate of complete pathological remission (pCR)
Primary endpoint for phase III (n=714): OS, HR 0.76, power 80%, two sided p<0.05

4xFLOT - OP - 4xFLOT

FLOT: docetaxel 50mg/m², d1; 5-FU 2600 mg/m², d1; leucovorin 200 mg/m², d1; oxaliplatin 85 mg/m², d1, every two weeks

3xECF(X) - OP - 3xECF(X)

ECF(X): Epirubicin 50 mg/m², d1; cisplatin 60 mg/m², d1; 5-FU 200 mg/m² (or capecitabine 1250 mg/m² p.o. divided into two doses d1-d21), every three weeks
Pathological Remission with ECF/ECX vs. FLOT – Central Evaluation, **ITT group***

<table>
<thead>
<tr>
<th>Pathological regression</th>
<th>ECF/ECX n(%)</th>
<th>FLOT n(%)</th>
<th>P-Value (2-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=137</td>
<td>N=128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete (pCR)</td>
<td>8</td>
<td>20</td>
<td>.015</td>
</tr>
<tr>
<td>Subtotal (pSR)</td>
<td>23</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>pCR+pSR</td>
<td>31</td>
<td>47</td>
<td>.015</td>
</tr>
<tr>
<td>Partial (pPR)</td>
<td>28</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Minor (pMR)</td>
<td>44</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>No response (pNR)</td>
<td>8</td>
<td>4</td>
<td>3,1</td>
</tr>
<tr>
<td>Not resectable</td>
<td>26</td>
<td>9</td>
<td>7,0</td>
</tr>
</tbody>
</table>

*primary Endpoint phase II

STO3 (ITT) 5.4%
Schema

TOPGEAR

ELIGIBILITY: RESECTABLE ADENOCARCINOMA OF STOMACH OR GOJ STAGE IB (T1N1) – IIIC, (T3, 4 and/or N +ve)

Randomisation

- **Group 1: Control Arm**
 - ECF (or ECX) X 3
 - REPEATED EVERY 21 DAYS

- **Group 2:**
 - ECF (or ECX) X 2
 - REPEATED EVERY 21 DAYS

Surgery (min. D1+)

- PREOP CRT
 - 45 Gy +CI 5-FU (or X)

ECF (or ECX) X 3

REPEATED EVERY 21 DAYS
Treatment for advanced gastric cancer: What is standard of care? ESMO guidelines

- **Surgery**
 - Re-assess

- **Inoperable or metastatic**
 - **Palliative chemotherapy**
 - **HER-2 negative**
 - Platinum+ fluoropyrimidine-based doublet or triplet regimen
 - **HER-2 positive**
 - Trastuzumab + CF/CX
 - **Best supportive care if unfit for treatment**
 - **Clinical trials if adequate PS**
 - **Consider clinical trials of novel agents**

Treatment for metastatic/unresectable gastric cancer: Active agents in first line

- Based upon superiority trials:
 - 5-FU
 - Cisplatin
 - Docetaxel
 - Trastuzumab

- Based upon non-inferiority trials
 - Oxaliplatin
 - Capecitabine
 - S1
 - Irinotecan

Have we made any progress in the treatment of advanced gastric cancer?

MEDIAN OVERALL SURVIVAL IN ADVANCED GASTRIC CANCER

EOX: Epirubicin/Oxaliplatin/Capecitabine.
FFCD-GERCOR-FNCLCC 03-07 Phase III Study. FOLFIRI vs ECF in advanced gastric cancer

Stratification:
- Measurable or not
- PS WHO 0-1 or 2
- Adj (R)CT or not
- Linitis or not
- Cardial or gastric
- Center

A: ECX until progression; then FOLFIRI 2d line
B: FOLFIRI until progression; then ECX 2d line

ECX: D1 = Epirubicin 50 mg/m² (15 min.), Cisplatin 60 mg/m² (1 h); D2 to 15: Capecitabine 1 g/m² x 2/d. D1 = D21. *Cumulated dose of Epirubicin < 900 mg/m² (max 18 cures)*

FOLFIRI: D1 = Irinotecan 180 mg/m² (90 min) + LV 400 mg/m² (2h), 5FU b 400 mg/m², 5FU c.i. 2400 mg/m² (46h). D1 = D14

Objective I: 1st line Time-to-Treatment Failure (TTF)

Objectives II:
- PFS, OS, (TTF 2nd line)
- Toxicity
- Response rate, QoL*

Objective II: Response Rate (RR), PFS and OS

<table>
<thead>
<tr>
<th></th>
<th>ECF N=209</th>
<th>FOLFIRI n=207</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTF (months)</td>
<td>4.2</td>
<td>5.1</td>
<td>0.008</td>
</tr>
<tr>
<td>RR 1st</td>
<td>39.2%</td>
<td>37.8%</td>
<td>n.s.</td>
</tr>
<tr>
<td>RR 2nd</td>
<td>10.1%</td>
<td>13.7%</td>
<td></td>
</tr>
<tr>
<td>PFS (months) Median</td>
<td>5.29</td>
<td>5.75</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>4.53-6.31</td>
<td>5.19-6.74</td>
<td></td>
</tr>
<tr>
<td>OS (months) Median</td>
<td>9.49</td>
<td>9.72</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>8.77-11.14</td>
<td>8.54-11.27</td>
<td></td>
</tr>
</tbody>
</table>

Phase II Study of modified DCF vs DCF plus G-CSF in advanced gastric cancer

Stratification:
- Measurable or not
- Gastric vs GEJ
- Center

A: modified DCF
B: standard DCF plus G-CSF

Objective: 6 months-PFS
Objectives II:
- RR, OS, Toxicity

Phase II Study of modified DCF vs DCF plus G-CSF in advanced gastric cancer

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose (mg/m²)</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arm A (mDCF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Docetaxel</td>
<td>40</td>
<td>Day 1 IVPB (60 minutes)</td>
</tr>
<tr>
<td>Leucovorin</td>
<td>400</td>
<td>Day 1 IVPB (30 minutes)</td>
</tr>
<tr>
<td>Fluorouracil</td>
<td>400</td>
<td>Day 1 IVP</td>
</tr>
<tr>
<td>Fluorouracil</td>
<td>1,000 (per day)</td>
<td>IVCI daily × 2 days</td>
</tr>
<tr>
<td>Cisplatin</td>
<td>40</td>
<td>Day 2 or 3 IVPB (30 minutes)</td>
</tr>
<tr>
<td>Arm B (parent DCF plus G-CSF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Docetaxel</td>
<td>75</td>
<td>Day 1 IVPB (60 minutes)</td>
</tr>
<tr>
<td>Cisplatin</td>
<td>75</td>
<td>Day 1 IVPB (60 minutes)</td>
</tr>
<tr>
<td>Fluorouracil</td>
<td>750 (per day)</td>
<td>IVCI daily × 5 days</td>
</tr>
<tr>
<td>Neulasta*</td>
<td>6 mg</td>
<td>Subcutaneous on day 8, 9, or 10</td>
</tr>
<tr>
<td>Neupogen*</td>
<td>300 or 480 µg†</td>
<td>Subcutaneous × 7 days (days 10 to 17)</td>
</tr>
</tbody>
</table>

Phase II Study of modified DCF vs DCF plus G-CSF in advanced gastric cancer

Docetaxel + Oxaliplatin + 5FU-LV/Capecitabine
TE vs TEF vs TEX

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Patients nr</th>
<th>RR %</th>
<th>95% CI</th>
<th>PFS months</th>
<th>95% CI</th>
<th>OS months</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE</td>
<td>79</td>
<td>23,1</td>
<td>14,3-34,0</td>
<td>4,50</td>
<td>3,68-5,32</td>
<td>8,97</td>
<td>7,79-10,9</td>
</tr>
<tr>
<td>TEX</td>
<td>86</td>
<td>25,6</td>
<td>16,6-36,6</td>
<td>5,55</td>
<td>4,30-6,37</td>
<td>11,30</td>
<td>8,08-14,0</td>
</tr>
<tr>
<td>TEF</td>
<td>89</td>
<td>46.6</td>
<td>35,9-57,5</td>
<td>7,66</td>
<td>6,97-9,40</td>
<td>14,59</td>
<td>11,7-21,8</td>
</tr>
</tbody>
</table>

Targeted therapies in first-line treatment for advanced gastric cancer: Summary of Phase III Trials

<table>
<thead>
<tr>
<th>Trial</th>
<th>Chemotherapy</th>
<th>Biological</th>
<th>HR OS</th>
<th>P value</th>
<th>Increase in median survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>ToGA(^1)</td>
<td>Cisplatin+5-FU/capecitabine</td>
<td>Trastuzumab</td>
<td>0.74</td>
<td>0.04</td>
<td>+2.8 months</td>
</tr>
<tr>
<td>AVAGAST(^2)</td>
<td>Cisplatin+capecitabine</td>
<td>Bevacizumab</td>
<td>0.87</td>
<td>0.10</td>
<td>+2.0 months</td>
</tr>
<tr>
<td>EXPAND(^3)</td>
<td>Cisplatin+capecitabine</td>
<td>Cetuximab</td>
<td>1.00</td>
<td>0.95</td>
<td>-1.3 months</td>
</tr>
<tr>
<td>REAL-3(^4)</td>
<td>Oxaliplatin+epirubicin+capecitabine</td>
<td>Panitumumab</td>
<td>1.37</td>
<td>0.013</td>
<td>-2.5 months</td>
</tr>
<tr>
<td>RILOMET-1(^5)</td>
<td>Cisplatin+epirubicin+capecitabine</td>
<td>Rilotumumab</td>
<td>--</td>
<td>--</td>
<td>Stopped in futility analysis</td>
</tr>
<tr>
<td>METGASTRIC(^6)</td>
<td>FOLFOX6</td>
<td>Onartuzumab</td>
<td>1.06</td>
<td>0.83</td>
<td>-0.6 months</td>
</tr>
</tbody>
</table>

Targeted therapies against HER2 in advanced gastric cancer: Summary of Phase III Trials on lapatinib

<table>
<thead>
<tr>
<th>TRIAL</th>
<th>Chemotherapy backbone</th>
<th>Line of therapy number</th>
<th>HR</th>
<th>P</th>
<th>Response rate</th>
<th>Increase in median survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>ToGA¹</td>
<td>Cisplatin+5-FU/capecitabine</td>
<td>First 584</td>
<td>0.74</td>
<td>0.04</td>
<td>51% vs 37% p=0.0017</td>
<td>+2.8 months</td>
</tr>
<tr>
<td>LOGiC²</td>
<td>Oxaliplatin/capecitabine</td>
<td>First 545</td>
<td>0.91</td>
<td>0.35</td>
<td>53% vs 39% p=0.031</td>
<td>+1.7 months</td>
</tr>
<tr>
<td>TyTAN³</td>
<td>Paclitaxel</td>
<td>Second 261</td>
<td>0.84</td>
<td>0.20</td>
<td>27% vs 9% p=0.001</td>
<td>+2.1 months</td>
</tr>
</tbody>
</table>

Gastric cancer: Second line chemotherapy. Trials comparing BSC versus active treatment

<table>
<thead>
<tr>
<th>Trial author</th>
<th>Year</th>
<th>Patients random (n)</th>
<th>Treatment</th>
<th>Response rate (%)</th>
<th>HR OS</th>
<th>P value</th>
<th>Gain in median survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thuss-Patience, et al.¹</td>
<td>2011</td>
<td>40 1:1</td>
<td>Irinotecan</td>
<td>NR SD 58%</td>
<td>0.48</td>
<td>0.0023</td>
<td>2.4 months</td>
</tr>
<tr>
<td>Kang, et al.²</td>
<td>2012</td>
<td>193 2:1</td>
<td>Irinotecan Docetaxel</td>
<td>NR</td>
<td>0.65</td>
<td>0.004</td>
<td>1.3 months</td>
</tr>
<tr>
<td>Ford, et al.³</td>
<td>2014</td>
<td>168 1:1</td>
<td>Docetaxel</td>
<td>NR</td>
<td>0.67</td>
<td>0.01</td>
<td>1.6 months</td>
</tr>
</tbody>
</table>

Gastric cancer second line chemotherapy: Docetaxel vs BSC (COUGAR-02 Trial) is improving survival

Figure 2: Kaplan-Meier plot of overall survival

Gastric cancer: Second line chemotherapy trials comparing BSC versus active treatment

<table>
<thead>
<tr>
<th>Trial author</th>
<th>Year</th>
<th>Patients random (n)</th>
<th>Treatment</th>
<th>HR</th>
<th>P value</th>
<th>Gain in median survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thuss-Patience, et al.¹</td>
<td>2011</td>
<td>40 1:1</td>
<td>Irinotecan</td>
<td>0.48</td>
<td>0.0023</td>
<td>2.4 months</td>
</tr>
<tr>
<td>Kang, et al.²</td>
<td>2012</td>
<td>193 2:1</td>
<td>Irinotecan Docetaxel</td>
<td>0.65</td>
<td>0.004</td>
<td>1.3 months</td>
</tr>
<tr>
<td>Ford, et al.³</td>
<td>2014</td>
<td>168 1:1</td>
<td>Docetaxel</td>
<td>0.67</td>
<td>0.01</td>
<td>1.6 months</td>
</tr>
<tr>
<td>Otshu, et al.⁴</td>
<td>2013</td>
<td>656 2:1</td>
<td>Everolimus</td>
<td>0.90</td>
<td>0.124</td>
<td>0.9 months</td>
</tr>
<tr>
<td>Fuchs, et al.⁵</td>
<td>2014</td>
<td>355 2:1</td>
<td>Ramucirumab</td>
<td>0.77</td>
<td>0.047</td>
<td>1.4 months</td>
</tr>
</tbody>
</table>

Gastric cancer: Second line chemotherapy trials comparing BSC versus active treatment

<table>
<thead>
<tr>
<th>Trial author</th>
<th>Year</th>
<th>Patients random (n)</th>
<th>Treatment</th>
<th>HR OS</th>
<th>P value</th>
<th>Gain in median survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thuss-Patience, et al.¹</td>
<td>2011</td>
<td>40 1:1</td>
<td>Irinotecan</td>
<td>0.48</td>
<td>0.0023</td>
<td>2.4 months</td>
</tr>
<tr>
<td>Kang, et al.²</td>
<td>2012</td>
<td>193 2:1</td>
<td>Irinotecan Docetaxel</td>
<td>0.65</td>
<td>0.004</td>
<td>1.3 months</td>
</tr>
<tr>
<td>Ford, et al.³</td>
<td>2014</td>
<td>168 1:1</td>
<td>Docetaxel</td>
<td>0.67</td>
<td>0.01</td>
<td>1.6 months</td>
</tr>
<tr>
<td>Otshu, et al.⁴</td>
<td>2013</td>
<td>656 2:1</td>
<td>Everolimus</td>
<td>0.90</td>
<td>0.124</td>
<td>0.9 months</td>
</tr>
<tr>
<td>Fuchs, et al.⁵</td>
<td>2014</td>
<td>355 2:1</td>
<td>Ramucirumab</td>
<td>0.77</td>
<td>0.047</td>
<td>1.4 months</td>
</tr>
</tbody>
</table>

Gastric cancer: Second line and third line trials comparing BSC versus active treatment

<table>
<thead>
<tr>
<th>Trial author</th>
<th>Year</th>
<th>Patients random (n)</th>
<th>Treatment</th>
<th>HR OS</th>
<th>P value</th>
<th>Gain in median survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thuss-Patience, et al.¹</td>
<td>2011</td>
<td>40 1:1</td>
<td>Irinotecan</td>
<td>0.48</td>
<td>0.0023</td>
<td>2.4 months</td>
</tr>
<tr>
<td>Kang, et al.²</td>
<td>2012</td>
<td>193 2:1</td>
<td>Irinotecan, Docetaxel</td>
<td>0.65</td>
<td>0.004</td>
<td>1.3 months</td>
</tr>
<tr>
<td>Ford, et al.³</td>
<td>2014</td>
<td>168 1:1</td>
<td>Docetaxel</td>
<td>0.67</td>
<td>0.01</td>
<td>1.6 months</td>
</tr>
<tr>
<td>Otshu, et al.⁴</td>
<td>2013</td>
<td>656 2:1</td>
<td>Everolimus</td>
<td>0.90</td>
<td>0.124</td>
<td>0.9 months</td>
</tr>
<tr>
<td>Fuchs, et al.⁵</td>
<td>2014</td>
<td>355 2:1</td>
<td>Ramucirumab</td>
<td>0.77</td>
<td>0.047</td>
<td>1.4 months</td>
</tr>
<tr>
<td>Li, et al.⁶</td>
<td>2016</td>
<td>273 2:1</td>
<td>Apatinib</td>
<td>0.70</td>
<td>0.015</td>
<td>1.8 months</td>
</tr>
</tbody>
</table>

Gastric cancer second line treatment: Ramucirumab vs BSC (REGARD Trial) is improving survival

Gastric cancer: Second line chemotherapy trials comparing two active treatments

<table>
<thead>
<tr>
<th>Trial author</th>
<th>Year</th>
<th>Patients (n)</th>
<th>Treatment</th>
<th>HR OS</th>
<th>P value</th>
<th>Gain in median survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hironaka, et al.¹</td>
<td>2013</td>
<td>223</td>
<td>Irinotecan vs paclitaxel</td>
<td>1.13</td>
<td>0.38</td>
<td>0.9 months for irinotecam</td>
</tr>
<tr>
<td>Wilke et al.²</td>
<td>2014</td>
<td>665</td>
<td>Paclitaxel+/-ramucirumab</td>
<td>0.80</td>
<td>0.017</td>
<td>2.2 months</td>
</tr>
</tbody>
</table>

Gastric cancer second line treatment: Addition of ramucirumab to paclitaxel improves overall survival (Rainbow Trial)

Phase II Study of weekly Paclitaxel +/- Olaparib for second line in advanced gastric cancer

Stratification: ATM Low

- A: weekly Paclitaxel
- B: weekly Paclitaxel plus Olaparib 100 mg bid

- Primary end point: PFS
- Co-Primary end point: PFS in ATM Low
- Secondary end points: OS, OS in ATM Low, Toxicity

Phase II Study of weekly Paclitaxel +/- Olaparib for second line in advanced gastric cancer

Phase II Study of weekly Paclitaxel +/- Olaparib for second line in advanced gastric cancer

Pembrolizumab induces responses in chemorefractory gastric cancer

<table>
<thead>
<tr>
<th></th>
<th>Investigator review</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N = 39</td>
</tr>
<tr>
<td>ORR, % (95% CI)</td>
<td>22.2 (10.1, 39.2)</td>
</tr>
<tr>
<td>Best overall response, n (%)</td>
<td></td>
</tr>
<tr>
<td>Complete response(^b)</td>
<td>0</td>
</tr>
<tr>
<td>Partial response(^b)</td>
<td>8 (22.2)</td>
</tr>
<tr>
<td>Stable disease</td>
<td>5 (13.9)</td>
</tr>
<tr>
<td>Progressive disease</td>
<td>19 (52.8)</td>
</tr>
<tr>
<td>No assessment(^c)</td>
<td>1 (2.8)</td>
</tr>
<tr>
<td>Not determined(^d)</td>
<td>3 (8.3)</td>
</tr>
</tbody>
</table>

Muro K, et al. ASCO GI 2015; Abstract nr.03
Classification of gastric adenocarcinoma: Pathology

- Intestinal versus diffuse subtypes

Classification of Gastric Adenocarcinoma: Pathology

- Papillary carcinomas
- Tubular carcinomas
- Mucinous carcinomas
- Poorly cohesive carcinomas

WHO Classification of Tumours of the Digestive System 4th Ed.2010 (International Agency for Cancer Research)
Comprehensive Molecular Characterization of Gastric Adenocarcinoma: Molecular platforms

- Array-based somatic copy number analysis
- Whole exome sequencing
- Array-based DNA methylation profiling
- Messenger RNA sequencing
- microRNA sequencing
- Reverse Phase Protein Array (RPPA)

Comprehensive Molecular Characterization of Gastric Adenocarcinoma: Molecular platforms
Comprehensive Molecular Characterization of Gastric Adenocarcinoma: PI3KCA mutations by subtype

Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes

Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes.
Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes
Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes.

Advanced Oesophago-Gastric cancer: Take-home messages I

- Her2 status to be determined in all patients with advanced disease
- Trastuzumab to be added if HER2 positive (+++)
- Platinum-based chemotherapy as first option, with FOLFIRI as an alternative
- Second line chemotherapy also prolongs survival in good PS patients
- Ramucirumab as single agent prolongs survival versus BSC
- Ramucirumab in combination with paclitaxel improves outcomes over paclitaxel
Advanced Oesophago-Gastric cancer: Take-home message II

- Most targeted therapies failed in molecularly unselected trials
- Immunotherapy (Pembrolizumab) under development with interesting data to be confirmed
- Better selection of patients needed in clinical trials
- Validation of molecular classification in trials
- International cooperation