Abstract 71P
Background
It has been proposed that around 3.5% of all human genes are directly linked to the onset of cancer. These cancer driver genes accumulate mutations, ultimately leading to tumorigenesis. Despite the known importance of cancer driver genes, their interactions in tissue-specific environments remain poorly understood. One approach to address this gap is to study the protein physical interactions (PPI) between drivers and their neighbors. We propose that when a driver mutation occurs, the PPIs with neighbor proteins can impact the mutation tumorigenic effect.
Methods
To test our hypothesis, we looked at patient mutations and gene expression data from the Cancer Genome Atlas Pan-Cancer Cohort. Cancer driver genes were retrieved from NCG and PPIs were obtained from multiple databases. Statistical analyses were used to detect neighbors whose expression is associated with driver mutation status. We also analyzed the difference in neighbor expression between tumor and the matching non-tumoral tissue; when no difference was detected we excluded that the mutation was influencing the neighbor gene expression.
Results
We identified more than 3000 neighbors significantly associated with at least one driver, within different cancer types and within individuals within the same type of cancer. Around 65% of driver genes analyzed had significant neighbors. Interestingly, most neighbors had coherent associations with multiple interacting drivers, either strictly promoting or strictly inhibiting driver mutation tumorigenic effects. We hypothesized that these neighbors could have a detectable influence in cancer development across multiple cancer types. Selecting the top 50 most frequent significant neighbors with coherent associations, Kaplan-Meier analysis showed a significant impact on patient overall survival.
Conclusions
This study supports that driver PPIs can influence cancer development. Pharmacologically changing the abundance of these neighbor proteins (or the stability of their PPIs) may help to alleviate driver mutation effects. The identification of these neighbor proteins implicated in tumorigenesis is an opportunity to advance both personalized treatment of cancer and provide new targets for drug development.
Editorial acknowledgement
Clinical trial identification
Legal entity responsible for the study
The authors.
Funding
UIDB/04046/2020 (DOI: 10.54499/UIDB/04046/2020 ) and UIDP/04046/2020 (DOI: 10.54499/UIDP/04046/2020) Centre grants from FCT, Portugal (to BioISI).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
152P - Nanopore sequencing of cfDNA captures key copy number alterations in lung adenocarcinoma: A non-invasive approach for prognosis, therapy, and subtyping
Presenter: Khashayar Roohollahi
Session: Cocktail & Poster Display session
Resources:
Abstract
153P - Discovery of new BRCA1/2 mutations not described in the international breast consortium
Presenter: Wala Ben Kridis
Session: Cocktail & Poster Display session
Resources:
Abstract
154P - Alternative splicing in non-small cell lung cancer evolution
Presenter: Michelle Leung
Session: Cocktail & Poster Display session
Resources:
Abstract
155TiP - Exploring mechanisms of action and resistance to innovative therapeutic drugs: UNLOCK program
Presenter: Julieta Rodriguez
Session: Cocktail & Poster Display session
Resources:
Abstract
157P - Therapeutic potential of B7-H3 targeting in pediatric neuroblastoma
Presenter: Caroline E Nunes-Xavier
Session: Cocktail & Poster Display session
Resources:
Abstract
158P - E-JIB-04: An epigenetic targeted therapy for ovarian cancer with MECOM amplification
Presenter: Ibha Singh
Session: Cocktail & Poster Display session
Resources:
Abstract
159P - The impact of kisspeptin pre-treatment towards temozolomide resistance mechanisms and associated differently expressed proteins (DEPs) in human glioblastoma cells
Presenter: Isra Sati
Session: Cocktail & Poster Display session
Resources:
Abstract
160P - Clinical observation and immune effects of high-intensity focused ultrasound (HIFU) in the treatment of liver metastasis in colorectal cancer
Presenter: Shasha Wang
Session: Cocktail & Poster Display session
Resources:
Abstract
161P - Early phase cancer clinical trials: A viable treatment option for patients?
Presenter: Rhona Dawson
Session: Cocktail & Poster Display session
Resources:
Abstract
162P - Tailoring patient molecular selection for novel anti-MET therapies
Presenter: Lucia Notario Rincon
Session: Cocktail & Poster Display session
Resources:
Abstract