Abstract 137P
Background
Despite outcomes in pediatric B-cell acute lymphoblastic leukemia (B-ALL) haing improved greatly in the past decades, 10-15% of patients will still experience an event after initial complete remission. In this context, identification of new outcome predictors and therapeutic targets is still needed. For that purpose, here we studied long non-coding RNAs (lncRNAs) as potential novel biomarkers and outcome predictors in pediatric B-ALL.
Methods
Total RNA, extracted from tumor samples at diagnosis of 50 patients from three different Spanish hospitals (development cohort, DC) and 72 samples from CHU Sainte-Justine hospital in Montreal, Canada (validation cohort, VC), was sequenced on NovaSeq 6000 System (Illumina), with a mean depth of ≈180 million paired-reads. Reads were aligned with STAR and quantified with featureCounts using lncRNAKB annotation (hg38). Univariate Cox Proportional Hazard Models (UVC) were used to identify significant genes (p < .01 & HR > 1) for five-year Event-Free Survival (EFS) in each cohort. Then, different EFS prediction models were adjusted from overlapping genes in the DC and validated in the VC. The best model was selected based on overall performance, assessed using metrics such as AUC, concordance and scaled Brier score. Finally, patients were grouped in very high-risk (R1, highest 10% predicted risk samples), high-risk (R2, next 20% highest predicted risk samples), or standard-risk (R3, lowest 70% predicted risk samples) groups to perform Kaplan-Meier (KM) survival curves.
Results
UVC resulted in 769 and 1686 significant genes for DC and VC, respectively, from which 47 were common (42 lncRNAs). Starting from those 47 genes, a model with 19 genes (16 lncRNAs) was selected. In the DC 100% of R1 patients, 20% from R2, and none of the patients from R3 group reported an event during first five years of follow-up. In the VC, 87.5% of patients from R1 had an event, 28.6% from R2, and just one patient (2%) from R3 group; being both analyses significant (p <00001) in KM analyses.
Conclusions
Our EFS prediction model is able to significantly discriminate risk groups predicting an event during the first five years of follow-up from diagnosis, being a potential prognostic predictor tool in the near precision oncology future.
Editorial acknowledgement
Clinical trial identification
Legal entity responsible for the study
The authors.
Funding
Eusko Jaurlaritza (Basque Government).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
146P - The prognosis value of heat-shock proteins in esophagogastric cancer: A systematic review and meta-analysis
Presenter: Eric Nakamura
Session: Cocktail & Poster Display session
Resources:
Abstract
148P - Identification of potential predictive biomarkers for ovarian cancer chemotherapy response
Presenter: Alsina Nurgalieva
Session: Cocktail & Poster Display session
Resources:
Abstract
149P - Rare RAS mutations are associated with recurrence patterns and recurrence-free survival in colon cancer: First results from Morocco
Presenter: Fatima Agy
Session: Cocktail & Poster Display session
Resources:
Abstract
151P - Development of a predictive model for response to neoadjuvant chemoradiation therapy of rectal cancer using the immunologic profile
Presenter: Eun Shin
Session: Cocktail & Poster Display session
Resources:
Abstract
152P - Biomarkers of neoadjuvant chemoradiotherapy response in locally advanced rectal cancer
Presenter: Cibele Masotti
Session: Cocktail & Poster Display session
Resources:
Abstract
153P - BRAF variants and therapy outcomes in melanoma
Presenter: Eftychia Chatziioannou
Session: Cocktail & Poster Display session
Resources:
Abstract
154P - The impact of proton pump inhibitors in the prognosis of patients with non-metastatic nasopharyngeal carcinoma
Presenter: João Barbosa Martins
Session: Cocktail & Poster Display session
Resources:
Abstract
155P - Use of machine learning for the identification of molecular biomarkers to predict response to neoadjuvant chemotherapy in locally advanced breast cancer patients
Presenter: María Del Río Pisula
Session: Cocktail & Poster Display session
Resources:
Abstract
156P - Molecularly driven therapy recommended by a molecular tumor board: Accessible option or privilege for a minority of patients? A single-center experience from the Czech Republic
Presenter: Michal Eid
Session: Cocktail & Poster Display session
Resources:
Abstract
157P - PCM4EU academy: An educational program for precision oncology
Presenter: Loic Verlingue
Session: Cocktail & Poster Display session
Resources:
Abstract