Abstract 57P
Background
CAR T cell therapies have shown success in cancer treatment, especially in hematologic malignancies. However, scalability, manufacturing, and inpatient treatment limit their broad use. A non-viral, off-the-shelf solution is key to overcoming these barriers, especially for indications outside oncology. Building on mRNA LNPs for in-vivo CAR T delivery, we developed SENDER (Specific Engager Nanoparticle DelivERy), a novel approach to redirect LNPs for targeted mRNA delivery to immune cells. SENDER proteins non-covalently bind to LNPs, redirect them to T cells, and block protein corona formation, reducing off-target accumulation in the liver.
Methods
The SENDER technology delivers LNP to T cells, ensuring specific mRNA delivery while preventing off-target accumulation. The design was tested both in vitro, for its ability to deliver mRNA payloads to T cells, and in vivo, using a humanized mouse model to evaluate tumor clearance and CAR T cell expression.
Results
CD3-targeting SENDER proteins effectively transfected both CD4+ and CD8+ T cells, while CD8-targeting SENDER proteins transfected only CD8+ T cells. The SENDER platform demonstrated superior targeting capabilities, allowing efficient mRNA delivery of multiple CARs and armoured elements to T cells. In a Nalm6 xenograft model, repeated doses of a novel humanised anti-CD19 mRNA CAR delivered via SENDER-LNPs resulted in rapid and sustained tumor clearance, achieved with a fraction of the dose typically required for other LNP targeting approaches. Off-target delivery to the liver was significantly reduced, highlighting the efficiency of the SENDER platform.
Conclusions
- The SENDER platform enables targeted in situ CAR T cell generation via non-viral mRNA delivery whilst avoiding lymphodepletion - Approach allows for the redirection of LNPs specifically to T cells, reducing off-target effects - In vivo studies demonstrated rapid and sustained tumor clearance with a lower -dose of LNPs compared to other targeting methods. - Technology offers a scalable, redosable alternative to conventional CAR T therapies - The modular nature of SENDER allows adaptation for various therapeutic areas, using different targeting proteins and payloads.
Legal entity responsible for the study
Chimeris UK Ltd.
Funding
Chimeris UK Ltd.
Disclosure
B. Ma, K. Hu, R. Karatill, R. Williams, J. Hayre, S. Srivastava, S. Cordoba, S. Onuoha: Financial Interests, Institutional, Stocks/Shares: Chimeris UK Ltd.
Resources from the same session
43P - Machine learning radiomics based on CT to predict response to lenvatinib plus tislelizumab based therapy for unresectable hepatocellular carcinoma
Presenter: Gang Chen
Session: Poster Display session
44P - Machine learning-based prediction of survival in patients with metastatic renal cell carcinoma receiving first-line immunotherapy
Presenter: Ahmed Elgebaly
Session: Poster Display session
45P - Gut microbiome signatures for exploring the correlation between gut microbiome and immune therapy response using machine learning approach
Presenter: Han Li
Session: Poster Display session
Resources:
Abstract
46P - Abnormal gut microbiota may cause PD-1 inhibitor-related cardiotoxicity via suppressing regulatory T cells
Presenter: Zeeshan Afzal
Session: Poster Display session
47P - Correlation of clinical, genetic and transcriptomic traits with PD-L1 positivity in TNBC patients
Presenter: Anita Semertzidou
Session: Poster Display session
48P - The A2AR antagonist inupadenant promotes humoral responses in preclinical models
Presenter: Paola Tieppo
Session: Poster Display session
49P - Highly potent novel armoured IL13Ra2 CAR T cell targeting glioblastoma
Presenter: Maurizio Mangolini
Session: Poster Display session
50P - Phase I trial of P-MUC1C-ALLO1 allogeneic CAR-T cells in advanced epithelial malignancies
Presenter: David Oh
Session: Poster Display session
51P - Unlocking CAR-T cell potential: Lipid metabolites in overcoming exhaustion in ovarian cancer
Presenter: Xiangyu Chang
Session: Poster Display session
Resources:
Abstract
52P - Tumor-targeted cytokine release by genetically-engineered myeloid cells rescues CAR-T activity and engages endogenous T cells against high-grade glioma in mouse models
Presenter: Federico Rossari
Session: Poster Display session