Abstract 61P
Background
Dendritic cell-derived exosomes (DEXs) represent an advanced cancer immunotherapy strategy, particularly in patients with advanced stages. However, the standard 14-day production time poses logistical challenges that limit access to this therapy. This study aimed to reduce the production time to 10 days, without compromising the immunological efficacy or structural integrity of the exosomes, to make the therapy more accessible and cost-effective.
Methods
To optimize DEX production, adjustments were made to the maturation times and redundant steps in cell culture were eliminated. Two production protocols were compared: an optimized 10-day protocol and the standard 14-day protocol. Three key parameters were evaluated:
1. Cell viability: This was measured by flow cytometry and cell viability assays.
2. Immunological potency: Assessed through the release of key cytokines associated with TH1 (IL-2, TNF-α, IFN-γ), TH2 (IL-4, IL-10), and TH17 (IL-6, IL-17A) profiles, using ELISA assays and flow cytometry.
3. Structural integrity: Assessed by western blot for expression of key exosomal markers (CD80, CD83, HLA-DR) and assessment of exosome size and morphology using Nanosight.
Results
Cell viability: The optimized 10-day protocol maintained an average cell viability of 91.2%, compared to 94.1% for the 14-day protocol. The 3% difference was not significant. Immunological potency: Differences in cytokine levels between the two protocols were less than 5%. Structural integrity: Differences in the expression of exosomal markers CD80, CD83, and HLA-DR were less than 5%. The average size of exosomes was 110 nm for the 10-day protocol and 112 nm for the 14-day protocol, with a percentage difference of 1.79%.
Conclusions
Reducing DEX production time from 14 to 10 days improves efficiency and reduces costs by 25.3%, without compromising quality. This protocol ensures cell viability, immunological potency, and exosomal integrity, making it ideal for centers with limited resources. Optimization allows scaling immunotherapy, increasing global access, essential pillars for its implementation.
Legal entity responsible for the study
Orlando Global R&D LLC.
Funding
Biotech Foundation.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
168TiP - A phase I dose escalation/expansion study of GSK5764227 (GSK’227), a B7-homolog 3 (B7-H3) protein targeted antibody-drug conjugate (ADC), in patients with advanced solid tumours
Presenter: Giuseppe Curigliano
Session: Poster Display session
Resources:
Abstract
169TiP - Colorectal carcinoma: Low dose immunotherapy in upfront metastatic d/MMR patients (CLOUD study)
Presenter: Anant Ramaswamy
Session: Poster Display session
Resources:
Abstract
177P - Ubiquitous neoantigens as targets for T cell recognition in a patient with metastatic pancreatic neuroendocrine tumour
Presenter: Jean-Benoit Tanis
Session: Poster Display session
Resources:
Abstract
178P - Comprehensive immunophenotype analysis in anti-PD-1 antibody sensitive and resistant syngeneic mouse model unravels perforin-expressing CD4+T cells dominant cytolytic activity
Presenter: Hiroyuki Inoue
Session: Poster Display session
Resources:
Abstract
179P - Impact of exercise training on tumour-infiltrating T cells in human prostate cancer
Presenter: Louise Lehrskov
Session: Poster Display session
Resources:
Abstract
180P - Chronic circadian disruption promotes melanoma progression by interfering with NK cells
Presenter: Shuwen Xiao
Session: Poster Display session
Resources:
Abstract
181P - Intratumoral heterogeneity of immune infiltrate in leiomyosarcomas
Presenter: Iva Benesova
Session: Poster Display session
Resources:
Abstract
182P - Innovative nano-immunotherapy for modulating tumor-immune interactions and microbiome in pancreatic cancer
Presenter: Liane Moura
Session: Poster Display session
Resources:
Abstract
183P - CAIX negatively modulates inflammatory and anti-tumor immune responses
Presenter: Eliska Svastova
Session: Poster Display session
Resources:
Abstract
184P - Alterations in tumorigenicity and immunogenicity of bladder cancer cells after somatic cell reprogramming
Presenter: Banu Iskender Izgi
Session: Poster Display session
Resources:
Abstract