Abstract 228P
Background
Recent research has emphasized the pivotal role of tumor-associated macrophages (TAMs) in shaping the efficacy of anti-tumor therapies. Metabolic reprogramming is a key driver of TAM polarization, influencing their pro-tumorigenic or anti-tumorigenic phenotypes. However, the precise mechanisms by which tumor cells manipulate TAM metabolism remain elusive. We have currently discovered that agonistic anti-CD40 antibodies promote anti-tumorigenic TAM activation by enhancing mitochondrial activity and modulating fatty acid oxidation (FAO). We further investigated the interplay between mitochondrial fitness and FAO in regulating TAM immunosuppressive functions.
Methods
We conducted a series of in vitro and in vivo experiments using mouse melanoma tumor models and bone marrow-derived macrophages (BMDMs) for this study.
Results
Our findings demonstrate that lipid-accumulated TAMs exhibit impaired mitochondrial activity, exacerbating their pro-tumorigenic properties. Tumor-derived lipids influence mitochondrial dynamics in TAMs, leading to increased FAO, mitochondrial reactive oxygen species (mtROS) production, and mitophagy. These metabolic alterations collectively contribute to the pro-tumorigenic phenotype of TAMs. Moreover, our research suggests that targeting mitochondrial dynamics-associated pathways may represent a promising therapeutic strategy to reverse TAM immunosuppression and enhance anti-tumor immunity.
Conclusions
This study provides valuable insights into the intricate relationship between lipid metabolism, mitochondrial dynamics, and TAM polarization within the tumor microenvironment (TME). By elucidating how lipid metabolism interacts with mitochondrial dynamics to modulate TAM phenotypes, we aim to develop innovative therapeutic approaches targeting these pathways to improve anti-tumor responses.
Legal entity responsible for the study
The author.
Funding
National Science and Technology Council (MOST 111-2314-B-400-026-MY3).
Disclosure
The author has declared no conflicts of interest.
Resources from the same session
31P - Peripheral-blood Immune-predictors of pathological complete response in patients with triple-negative breast cancer undergoing neoadjuvant chemo-immunotherapy
Presenter: Celeste Santoro
Session: Poster Display session
32P - Immune T cell subsets dynamics in the early TNBC treatment setting
Presenter: Rocío Martín Lozano
Session: Poster Display session
33P - Tumor-specific CD4 Th1 responses in long-term responder melanoma patients treated with immune checkpoint inhibitors.
Presenter: Jessica Mathiot
Session: Poster Display session
34P - Linking early immunity changes to clinical outcomes in cutaneous squamous cell carcinoma following anti-programmed death cell-1 (PD-1) treatment
Presenter: Marcella Scala
Session: Poster Display session
37P - Lymphocyte Subpopulation Balances as a Blood Biomarker for Immune-Related Adverse Events in Patients Receiving Immune Checkpoint Inhibitors
Presenter: Mireille Langouo fontsa
Session: Poster Display session
38P - Biomarkers predictive of response to immune checkpoint inhibitor therapy in patients with metastatic melanoma
Presenter: Eliza Bob
Session: Poster Display session
39P - Analysis of the immune response patterns in localized prostate cancer
Presenter: Sara Merler
Session: Poster Display session
40P - MANIFEST: A Multiomic Profiling Platform for Immuno-Oncology Biomarker Discovery
Presenter: Zayd Tippu
Session: Poster Display session
41P - Total tumor burden and radiomics to evaluate response in dose escalation studies: Roginolisib (IOA-244), a highly selective PI3Kd inhibitor in metastatic uveal melanoma patients
Presenter: Anna Di Giacomo
Session: Poster Display session