Abstract 44P
Background
Immunotherapy has significantly improved survival outcomes for patients with metastatic renal cell carcinoma (mRCC). However, considerable variability exists in patient survival. Machine learning (ML) models offer an opportunity to harness diverse patient data to predict survival outcomes and tailor treatment strategies. This study aimed to develop ML models to predict the overall survival (OS) in mRCC patients receiving first-line immunotherapy.
Methods
We analysed 4895 mRCC patients from the National Cancer Database who received first-line immunotherapy since 2015. Fifteen features were selected based on the univariate Cox regression for OS, including demographics, Charlson-Deyo Score, tumour side, grade, lymph vascular invasion, and prior surgery or radiotherapy. Missing values were imputed using K-Nearest Neighbors. The data was split into training (70%) and testing (30%) sets. Classification and regression models were compared using hyperparameter tuning and 5-fold cross-validation. The SMOT technique addressed class imbalance.
Results
The 1-year and 3-year OS were 32.7% and 9.9%, respectively. Among the classification models, CatBoost demonstrated the best performance, with an area under curve (AUC) of 0.87, followed by LightGBM (0.86), XGBoost (0.86), and Decision Tree (0.86). The Decision Tree model achieved the highest F1 score (0.57), indicating a good balance between precision and recall. However, simpler models like Naive Bayes showed lower performance across all metrics. In the regression task, CatBoost also achieved the best performance, with a Mean Squared Error (MSE) of 115.5 and an R2 score of 0.52, indicating robust predictive accuracy. Feature importance analysis showed that tumour grade was the most significant predictor, followed by prior surgery and patient age. Socioeconomic factors, such as insurance status and facility type, also contributed significantly to the outcomes, while race had minimal predictive importance in this cohort.
Conclusions
Ensemble methods, particularly CatBoost, show superior performance in predicting mRCC outcomes. Tumour grade, surgery, and patient age emerged as key predictors.
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
31P - Peripheral-blood Immune-predictors of pathological complete response in patients with triple-negative breast cancer undergoing neoadjuvant chemo-immunotherapy
Presenter: Celeste Santoro
Session: Poster Display session
Resources:
Abstract
32P - Immune T cell subsets dynamics in the early TNBC treatment setting
Presenter: Rocío Martín Lozano
Session: Poster Display session
Resources:
Abstract
33P - Tumor-specific CD4 Th1 responses in long-term responder melanoma patients treated with immune checkpoint inhibitors.
Presenter: Jessica Mathiot
Session: Poster Display session
Resources:
Abstract
34P - Linking early immunity changes to clinical outcomes in cutaneous squamous cell carcinoma following anti-programmed death cell-1 (PD-1) treatment
Presenter: Marcella Scala
Session: Poster Display session
Resources:
Abstract
36P - Exploring the role of soluble B7-H3 (sB7-H3) as a biomarker to predict the clinical benefit and/or the occurrence of immune related adverse events (irAEs) in advanced cancer patients treated with immune checkpoint inhibitors (ICIs)
Presenter: Luigi Liguori
Session: Poster Display session
Resources:
Abstract
37P - Lymphocyte Subpopulation Balances as a Blood Biomarker for Immune-Related Adverse Events in Patients Receiving Immune Checkpoint Inhibitors
Presenter: Mireille Langouo fontsa
Session: Poster Display session
Resources:
Abstract
38P - Biomarkers predictive of response to immune checkpoint inhibitor therapy in patients with metastatic melanoma
Presenter: Eliza Bob
Session: Poster Display session
Resources:
Abstract
39P - Analysis of the immune response patterns in localized prostate cancer
Presenter: Sara Merler
Session: Poster Display session
Resources:
Abstract
40P - MANIFEST: A Multiomic Profiling Platform for Immuno-Oncology Biomarker Discovery
Presenter: Zayd Tippu
Session: Poster Display session
Resources:
Abstract
41P - Total tumor burden and radiomics to evaluate response in dose escalation studies: Roginolisib (IOA-244), a highly selective PI3Kd inhibitor in metastatic uveal melanoma patients
Presenter: Anna Di Giacomo
Session: Poster Display session
Resources:
Abstract