Abstract 190P
Background
Immunotherapy has changed the treatment landscape in some cancers and even led to favorable outcomes in previously incurable cancer types. Despite the potential benefits, only a fraction of patients respond to current immuno-oncology (IO) treatments. Lack of predictive biomarkers, unknown mechanisms of immune resistance, complex tumor-immune interactions, and the understudied role of the tumor microenvironment pose significant challenges to the use of IO drugs. Moreover, predicting which patients would benefit from the expensive new treatments remains a significant challenge.
Methods
To address these issues, we developed a precision ex vivo platform that integrates patient-specific tumor and immune cells to study the mechanisms of antitumor immune response, predict immunotherapy outcomes, and identify effective treatments. In order to establish this, we first stimulate the patient's immune cells with autologous tumor organoids. This is followed by a tumor-killing assay utilizing the stimulated immune cells with or without different immunotherapy combinations. Lastly, we single-cell sequence different treatment conditions to reveal changes In order to establish this the immune and tumor cells following their interactions.
Results
Single-cell sequencing revealed immune response mechanisms and sensitivities to standard of care immunotherapies. Furthermore, we were able to identify a synergistic combination of anti-PD-1 together with a Cbl-b inhibitor that overcame anti-PD-1 resistance in selected patient samples. Activation of the interferon gamma-stimulated cytokines predicted combination efficacy, while immunosuppressive cytokines were associated with poor response.
Conclusions
Our findings underscore the platform's potential in tailoring immunotherapies and advancing drug development, offering new avenues for personalized cancer treatment.
Legal entity responsible for the study
HaikaLab, Immuno-Oncology Research Group.
Funding
Orion Pharma.
Disclosure
E. Narvi, A. Thotakura: Financial Interests, Personal, Full or part-time Employment: Orion Pharama. S. Mustjoki: Financial Interests, Personal and Institutional, Principal Investigator, Honoraria and research funding (not related to this study): Novartis, Pfizer, Bristol Myers Squibb, Dren-Bio. All other authors have declared no conflicts of interest.
Resources from the same session
31P - Peripheral-blood Immune-predictors of pathological complete response in patients with triple-negative breast cancer undergoing neoadjuvant chemo-immunotherapy
Presenter: Celeste Santoro
Session: Poster Display session
32P - Immune T cell subsets dynamics in the early TNBC treatment setting
Presenter: Rocío Martín Lozano
Session: Poster Display session
33P - Tumor-specific CD4 Th1 responses in long-term responder melanoma patients treated with immune checkpoint inhibitors.
Presenter: Jessica Mathiot
Session: Poster Display session
34P - Linking early immunity changes to clinical outcomes in cutaneous squamous cell carcinoma following anti-programmed death cell-1 (PD-1) treatment
Presenter: Marcella Scala
Session: Poster Display session
37P - Lymphocyte Subpopulation Balances as a Blood Biomarker for Immune-Related Adverse Events in Patients Receiving Immune Checkpoint Inhibitors
Presenter: Mireille Langouo fontsa
Session: Poster Display session
38P - Biomarkers predictive of response to immune checkpoint inhibitor therapy in patients with metastatic melanoma
Presenter: Eliza Bob
Session: Poster Display session
39P - Analysis of the immune response patterns in localized prostate cancer
Presenter: Sara Merler
Session: Poster Display session
40P - MANIFEST: A Multiomic Profiling Platform for Immuno-Oncology Biomarker Discovery
Presenter: Zayd Tippu
Session: Poster Display session
41P - Total tumor burden and radiomics to evaluate response in dose escalation studies: Roginolisib (IOA-244), a highly selective PI3Kd inhibitor in metastatic uveal melanoma patients
Presenter: Anna Di Giacomo
Session: Poster Display session