Abstract 129P
Background
Cancer immunotherapy has revolutionized cancer treatment by harnessing the immune system to target tumors. However, its clinical success is limited by low response rates, typically ∼20%. To address the challenge, we developed a transcriptome-based computational framework aimed at improving the efficacy of immunotherapy.
Methods
We established a computational framework to analyze similarities between transcriptome patterns associated with responsiveness or resistance to cancer immunotherapy. We then applied this computational framework to two applications: identifying predictive biomarkers for immunotherapy response and discovering synergistic compounds for combination therapy with immunotherapy. To identify predictive biomarkers, we investigated genomic and epigenomic changes and the transcriptional impact of gene knockouts or knockdowns that mimic the transcriptome pattern of responders. To identify synergistic compounds for combination therapy, we screened compounds in silico that reverse gene signatures associated with resistance to immunotherapy (e.g., T cell exclusion signature, cancer immune resistance program, and nivolumab resistance signature. Finally, we evaluated our computational results through in vitro and in vivo studies.
Results
Using this approach, we found genomic biomarkers that could enhance immunotherapy response. We also discovered three types of chemical compounds for combination therapy: I) known immunotherapy agents (POC verification), Ⅱ) unknown immunotherapy agents with known MoA (drug repurposing), Ⅲ) four clusters with new chemical structures (new drug candidates). We further studied a compound cluster from (Ⅲ) by reverse-docking and measuring structural similarity to identify potential drug targets. We finally demonstrated that co-administration of the compound with anti-PD1 significantly improved survival in a syngeneic mouse model.
Conclusions
We successfully identified both predictive biomarkers and novel synergistic compounds that enhance the efficacy of cancer immunotherapy. These findings hold promise for improving patient outcomes and developing more effective combination therapies. The newly identified compounds are now progressing through preclinical development.
Legal entity responsible for the study
The authors.
Funding
Korea Institute of Science and Technology Information (KISTI) (K24L2M1C4-01) The National Research Foundation of Korea (NRF-2022R1C1C1006162).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
53P - Novel ex-vivo manufacturing of transiently expressed armoured CAR T cells for glioblastoma
Presenter: Saket Srivastava
Session: Poster Display session
Resources:
Abstract
54P - Superior antitumor activities of fourth-generation CAR-T cells containing three costimulatory domains targeting GD2-positive tumors
Presenter: Jatuporn Sujjitjoon
Session: Poster Display session
Resources:
Abstract
55P - Engineering of chimeric cytokine receptors (CCR) to induce IL-7 signaling to CAR-T cells for solid tumor treatment
Presenter: Marta Soria Castellano
Session: Poster Display session
Resources:
Abstract
56P - Potent antitumor efficiency of CD19-CAR T cells self-secreting PD-L1 x CD3 BiTE against aggressive B-cell lymphoma
Presenter: Jatuporn Sujjitjoon
Session: Poster Display session
Resources:
Abstract
57P - SENDER™ Directed LNP Delivery of mRNA for In Situ generation of highly potent CAR T Cells
Presenter: Biao Ma
Session: Poster Display session
Resources:
Abstract
58P - Cardiovascular outcomes of novel CAR-T cell therapies: A meta-analysis of incidence, risk factors, and management of cardiotoxicity
Presenter: Hashim Talib Hashim
Session: Poster Display session
Resources:
Abstract
59P - Long term survival data from all recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC) patients treated with MVX-ONCO-1 during open-labelled phase I and phase IIa clinical trials
Presenter: Nicolas Mach
Session: Poster Display session
Resources:
Abstract
60P - Innovative applications of neoantigens in dendritic cell-derived exosome (DEX) therapy and their impact on personalized cancer treatment
Presenter: Ramon Gutierrez
Session: Poster Display session
Resources:
Abstract
61P - Optimized protocol for the accelerated production of dendritic cell-derived exosomes (DEXs): Achieving speed without compromising efficacy
Presenter: Ramon Gutierrez
Session: Poster Display session
Resources:
Abstract
62P - Ecto-CRT induction of NKp46 surface expression increases osimertinib-resistant lung cancer’s sensitivity to NK cells
Presenter: Sumei Chen
Session: Poster Display session
Resources:
Abstract