Abstract 129P
Background
Cancer immunotherapy has revolutionized cancer treatment by harnessing the immune system to target tumors. However, its clinical success is limited by low response rates, typically ∼20%. To address the challenge, we developed a transcriptome-based computational framework aimed at improving the efficacy of immunotherapy.
Methods
We established a computational framework to analyze similarities between transcriptome patterns associated with responsiveness or resistance to cancer immunotherapy. We then applied this computational framework to two applications: identifying predictive biomarkers for immunotherapy response and discovering synergistic compounds for combination therapy with immunotherapy. To identify predictive biomarkers, we investigated genomic and epigenomic changes and the transcriptional impact of gene knockouts or knockdowns that mimic the transcriptome pattern of responders. To identify synergistic compounds for combination therapy, we screened compounds in silico that reverse gene signatures associated with resistance to immunotherapy (e.g., T cell exclusion signature, cancer immune resistance program, and nivolumab resistance signature. Finally, we evaluated our computational results through in vitro and in vivo studies.
Results
Using this approach, we found genomic biomarkers that could enhance immunotherapy response. We also discovered three types of chemical compounds for combination therapy: I) known immunotherapy agents (POC verification), Ⅱ) unknown immunotherapy agents with known MoA (drug repurposing), Ⅲ) four clusters with new chemical structures (new drug candidates). We further studied a compound cluster from (Ⅲ) by reverse-docking and measuring structural similarity to identify potential drug targets. We finally demonstrated that co-administration of the compound with anti-PD1 significantly improved survival in a syngeneic mouse model.
Conclusions
We successfully identified both predictive biomarkers and novel synergistic compounds that enhance the efficacy of cancer immunotherapy. These findings hold promise for improving patient outcomes and developing more effective combination therapies. The newly identified compounds are now progressing through preclinical development.
Legal entity responsible for the study
The authors.
Funding
Korea Institute of Science and Technology Information (KISTI) (K24L2M1C4-01) The National Research Foundation of Korea (NRF-2022R1C1C1006162).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
205P - Advancing pre-clinical functional tests with immune-responsive Precision Cut Bladder Tumor Slices (PCTS)
Presenter: Sarah Richtmann
Session: Poster Display session
Resources:
Abstract
206P - Characterisation of tumour-infiltrating lymphocytes (TILs) in liver metastases (LM) and primary tumour (PT) of microsatellite stable (MSS) colorectal cancers
Presenter: Yi Hua Low
Session: Poster Display session
Resources:
Abstract
207P - ZEB2 inhibition relieves TAMs-mediated immunosuppression in EGFR-TKI resistant NSCLC
Presenter: Yunhuan Liu
Session: Poster Display session
Resources:
Abstract
208P - Targeting pro-tumor TAMs to improve immune checkpoint response of advanced bladder cancer
Presenter: Marine Leblond
Session: Poster Display session
Resources:
Abstract
209P - Mapping the landscape of immune cells for optimal index calculation using AI-powered image analysis of multiplexed immunohistochemistry in breast cancer patients
Presenter: Patricia Nielsen
Session: Poster Display session
Resources:
Abstract
210P - Precision immuno-oncology strategies to overcome drug resistance in non-small cell lung cancer
Presenter: Heidi Haikala
Session: Poster Display session
Resources:
Abstract
211P - Single-cell characterization of differentiation trajectories and drug resistance features in gastric cancer with peritoneal metastasis
Presenter: Haoxin Peng
Session: Poster Display session
Resources:
Abstract
212P - YAP/TEAD4/SP1-induced VISTA expression as a tumor cell-intrinsic mechanism of immunosuppression in colorectal cancer
Presenter: Zhehui Zhu
Session: Poster Display session
Resources:
Abstract
214P - DNA-damaging therapies trigger transcriptome and metabolism changes in peripheral NK cells of SCLC patients
Presenter: Caterina de Rosa
Session: Poster Display session
Resources:
Abstract
215P - Differential spatial gene expression and clinicopathologic characteristics are associated with exceptional response to immune checkpoint inhibition in recurrent/metastatic head and neck cancer
Presenter: Niki Gavrielatou
Session: Poster Display session
Resources:
Abstract