Abstract 126P
Background
Virotherapy is a developing treatment modality with multiple therapeutic mechanisms. Viruses used in this approach can be oncolytic and induce the host immune response against tumor cells. However, oncolytic viruses used as monotherapies are not always effective. We demonstrated that a combination of Echovirus 7, Enterovirus B75, Coxsackievirus A21, and Poliovirus Type 3 with radiation therapy and immune checkpoint inhibitors (ICIs) shows efficacy in in vivo breast cancer models.
Methods
Breast cancer cell line 4T1-PVR (expressing human poliovirus receptor PVR/CD155), were obtained through lentiviral transduction. For the triple combination studies, Balb/c mice were injected subcutaneously with 4T1-PVR cells on day 0. Mice were treated with EnteroMix intravenously on days 7, 12, and 17. An intravenous administration of anti-PD-L1 antibody was done on days 10, 14, and 19. Tumor irradiation was performed on day 24 at a dosage of 5 Gy. CD45+ cells were isolated from the tumors using MagniSort™ Mouse CD45. The cells were stained with anti-mouse CD3, CD4, CD8, CD11b. Flow cytometry analysis was performed on a Fortessa X20. Data analysis was conducted using FlowJo™ v10 software.
Results
The combination of EnteroMix and radiation demonstrated a significant antitumor effect, and the addition of a PD-L1 inhibitor further reduced tumor growth and improved mouse survival. Treatment with the PD-L1 inhibitor alone had no effect on tumor growth, indicating that the tumor was resistant to ICI. Therapeutic responses were associated with increased infiltration of CD45+ immune cells into the tumor, including an increase in CD8+ T cells and a decrease in regulatory T cells.
Conclusions
In a preclinical surrogate model, the triple combination of oncolytic viruses, radiation, and immune checkpoint inhibition resulted in increased tumor infiltration by CD8+ T cells, correlating with reduced tumor volumes and improved animal survival.
Legal entity responsible for the study
The authors.
Funding
Ministry of Science and Higher Education of the Russian Federation (project No.447).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
124P - AI-designed cancer vaccines: Antigens from the dark genome are promising cancer vaccine targets
Presenter: Daniela Kleine-Kohlbrecher
Session: Poster Display session
125P - Enhancing the efficacy of neoantigen tumor vaccines in melanoma treatment through different administration times
Presenter: Kai Xiao
Session: Poster Display session
127P - Combining chemotherapy and checkpoint inhibitors with an engineered oncolytic adenovirus encoding a human vIL-2 cytokine to treat pancreatic ductal adenocarcinoma
Presenter: Nea Ojala
Session: Poster Display session
128P - Non-coding DNA lipid nanoparticles elicit antitumor immune responses and synergize with anti-PDL1 antibodies in mouse models of hepatocellular carcinoma
Presenter: Alba Rodriguez Garcia
Session: Poster Display session
129P - Computational approaches for enhancing the efficacy of cancer immunotherapy
Presenter: Byungho Lim
Session: Poster Display session
130P - Neoadjuvant treatment with a bispecific antibody cadonilimab in dMMR/MSI-H locally advanced colorectal cancer: Preliminary results from a phase II trial
Presenter: Caifeng Gong
Session: Poster Display session
131P - The efficacy and safety of cadonilimab with or without trastuzumab in combination with SOX as first-line (1L) treatment for advanced gastric (G) or gastroesophageal Junction adenocarcinoma (GEJA)
Presenter: Wenhui Yang
Session: Poster Display session
132P - An open-label, prospective phase II study of cadonilimab in combination with neoadjuvant chemotherapy for patients diagnosed with advanced ovarian cancer (AK104-IIT-003)
Presenter: Jie Tang
Session: Poster Display session