Abstract 124P
Background
Personalized cancer vaccines, targeting patients' tumor mutations, have significantly advanced cancer treatment. However, the use of neoantigens is restricted to tumors with sufficiently high mutational burden, limiting their use to selected cancer indications. The discovery of endogenous retroviruses (ERV) as relevant immunologic features contained in the dark genome and the research demonstrating their dynamic role in cancer development and progression provide potential prospects for therapeutic use. Evaxion Biotech’s core technology, AI-Immunology™ allows for identification and selection of ERVs as a new antigen source for designing personalized and precision therapeutic cancer vaccines. In the presented work we explore the efficacy of AI-Immunology™ identified ERVs as alternative antigens for cancer vaccines in preclinical mouse and human cell models. The basis of the tested vaccine designs are shared ERV antigenic hotspots, amino acid sequences containing one or more HLA allele ligands, targeting a broad population.
Methods
Mouse tumor studies were performed to validate AI-Immunology™ predicted murine ERV vaccine designs. For ERV antigen identification, RNA-sequencing data from different mouse tumor cell lines were used. The AI-Immunology™ selected antigens were encoded into plasmid DNA and mice were immunized intramuscularly with the plasmid DNA vaccine. The efficacy of the selected murine ERV antigens was evaluated based on the induction of functional antigen-specific T cells and ability to inhibit tumor growth. Furthermore, the ability of predicted human ERV antigens to induce an antigen-specific T-cell response was tested by in vitro stimulation of human PBMCs with ERV antigen peptides and measuring T-cell activation using ELISpot analysis.
Results
Immune analysis of the in vivo and in vitro studies demonstrate that the selected murine and human ERV antigenic hotspots induce significant antigen-specific T-cell responses in mice and human PBMCs. Murine ERV hotspots lead also to tumor growth inhibition in mice.
Conclusions
The obtained results prove that the AI-Immunology™ platform can identify functional and potent ERV antigenic hotspots. This warrants for further development towards clinical application.
Legal entity responsible for the study
Evaxion Biotech A/S.
Funding
Evaxion Biotech A/S.
Disclosure
D. Kleine-Kohlbrecher, S. Vester Kofoed, J. Kringelum, B. Rønø: Financial Interests, Personal, Full or part-time Employment: Evaxion Biotech; Financial Interests, Personal, Stocks/Shares: Evaxion Biotech. R. O. Andersen: Financial Interests, Personal, Full or part-time Employment: Evaxion Biotech A/S. M. B. Calvo, S. Friis, R. Villebro, M. S. Klausen, S.F. Thorsen: Financial Interests, Personal, Full or part-time Employment: Evaxion Biotech A/S; Financial Interests, Personal, Stocks/Shares: Evaxion Biotech A/S.
Resources from the same session
195P - Anti-CTLA4 therapy leads to early expansion of peripheral Th17 population and induction of Th1 cytokines
Presenter: Mari Nakazawa
Session: Poster Display session
Resources:
Abstract
196P - Single-cell analysis of stage-I high-grade serous ovarian carcinoma reveals the essential role of regulatory T cells in early tumor establishment
Presenter: Joanna Mikulak
Session: Poster Display session
Resources:
Abstract
197P - Comprehensive immunoprofiling of the intratumoral and peripheral T cell receptor gene repertoire in triple-negative breast cancer patients
Presenter: Antonios Mingos
Session: Poster Display session
Resources:
Abstract
198P - Association of types of treatment modalities with expression of T Lymphocytes (CD4, CD8, Treg) in breast cancer patients and their clinical outcome
Presenter: Arshi Rizwan
Session: Poster Display session
Resources:
Abstract
199P - Cancer neutrophil encyclopedia: A deep dive into antigen-presenting warriors
Presenter: Yingcheng Wu
Session: Poster Display session
Resources:
Abstract
200P - CXCR1+ neutrophil infiltration orchestrates response to third-generation EGFR-TKI in EGFR mutant NSCLC
Presenter: Haowei Wang
Session: Poster Display session
Resources:
Abstract
201P - Underlying mechanisms of neutrophil-mediated immunosuppression and resistance to treatment in breast cancer: Further evidence that these cells matter
Presenter: Bruna Filipa Correia
Session: Poster Display session
Resources:
Abstract
202P - Mining tumor infiltrating B cells to discover antibody-target pairs and develop novel therapies
Presenter: Matthieu Delince
Session: Poster Display session
Resources:
Abstract
203P - Targeting IL-33 reprograms tumor microenvironment and potentiates antitumor response to anti-PD-L1 immunotherapy
Presenter: Xuyao Zhang
Session: Poster Display session
Resources:
Abstract
204P - Deciphering the crosstalk between tumor and circulating immune microenvironment in advanced NSCLC patients undergoing immunotherapy
Presenter: Prisca Tamarozzi
Session: Poster Display session
Resources:
Abstract