Abstract 61P
Background
Natural killer (NK) cells may be particularly suited to cancer therapy. However, the heterogeneity of NK cell populations poses challenges in isolating highly functional subpopulations for therapeutic applications. This study presents a novel microfluidic platform that can select NK cells with enhanced avidity, aiming to improve the precision and efficacy of NK cell-based immunotherapies.
Methods
We used a microfluidics device that uses fluid shear stress to sort and isolate and sort NK cells based on their avidities to the target cells. Briefly, we sterilized our chip and coated it with fibronectin overnight and cultured lung cancer (A549) and ovarian cancer (SKOV3) cells for 24 hours until they achieved a monolayer. We then introduced NK cells on top of the monolayer and left these two types of cells to interact under static condition for 10 minutes. Using syringe pump, we applied fluid flow to induce shear ranging from 0.5Pa to 19.8 Pa in order to isolate the NK cells after each flow. To explore if avidity correlated with cytotoxicity, we cultured monolayer of A549 on our chip then introduced two types of NK cells: treated NK cells (adNK) and NK cells isolated from peripheral blood (cbNK). We followed the same protocol as described above to determine the NK cell type with high avidity.
Results
Our results show that at least 4.5 % and 4% cbNK cells remained attached to SKOV3 cells and A549 respectively after exposure to shear as high as 19.8 Pa. This avidity profile was different for adNK cells on A549. 30% of and NK cells remained attached to A549 cells after 19.8 Pa shear. This result also matched the cytotoxicity profile of adNK cells compared to that of cbNk cells for A549 cells.
Conclusions
In this study we used a novel method to sort and isolate NK cells based on their avidity to its target cancer cells. Although this device has been used to isolate and sort T cell population before, to our knowledge, for the first time we showed that NK cells can be isolated using their avidity to target cells. In addition, the higher avidity adNk cell aligned with its high cytotoxicity suggesting that selecting NK cells based on avidity may lead to selection of potent NK cells.
Legal entity responsible for the study
Imperial College London.
Funding
Imperial College London, Department of Bioengineering Imperial College London, Department of Life Sciences.
Disclosure
The author has declared no conflicts of interest.
Resources from the same session
147P - Pre-clinical evaluation and safety profile of the highly selective anti-VISTA antibody K01401-020
Presenter: Geneviève Gueguen Dorbes
Session: Poster Display
148P - HexaBody-OX40, a novel Fc_ receptor crosslinking-independent OX40-targeting antibody, exhibits agonistic activity in vitro and antitumor activity in vivo
Presenter: Kristel Kemper
Session: Poster Display
149P - HLA/SIRPa bispecifics-A novel multitarget therapeutic strategy to induce potent anti-tumor immune responses
Presenter: anahita rafiei
Session: Poster Display
150P - Chemotherapy in combination with Toll-like receptor agonism promoted antitumor immune response in triple negative breast cancer
Presenter: Eunice Dotse
Session: Poster Display
151P - Tumor organoid-derived TIL therapy for colorectal cancer
Presenter: Marc Leushacke
Session: Poster Display
152P - Discovery of best-in-class dual-acting A2AR/A2BR antagonists that are functional in high adenosine environment
Presenter: Nainesh Katagihallimath
Session: Poster Display
153P - Discovery of a Novel, Dual CD73 and PD-1 Targeting Multispecific Drug Fc-Conjugate (DFC) for the Treatment of Cancer
Presenter: James Levin
Session: Poster Display
154P - Computer-aided drug design based on CLDN4 ligand and its biological evaluation in ovarian cancer
Presenter: Yi Xu
Session: Poster Display
155P - A Phase 1 Study Exploring the Safety and Tolerability of the Small-Molecule PD-L1 Inhibitor INCB099280 in Select Advanced Solid Tumors
Presenter: Hans Prenen
Session: Poster Display
156TiP - The LUNGVAC-study; A randomized phase II, open-label, multicenter study investigating efficacy and safety of anti-PD-1/PD-L1 treatment +/- UV1 vaccination as first line treatment in patients with inoperable advanced or metastatic non-small cell lung cancer (NSCLC)
Presenter: Elin Marie Stensland
Session: Poster Display