Abstract 174P
Background
Colorectal cancer (CRC) is the second leading cause of cancer deaths, and liver metastasis accounts for most fatalities in CRC patients. Developing more effective treatments for patients with metastatic CRC is an urgent unmet need. Sphingosine kinase 1 (SPHK1) is selectively expressed in tumor-associated macrophages (TAMs) and SPHK1+ TAMs are abundant in metastatic tumor microenvironment. Here, we aimed to reveal the role of SPHK1+ TAMs in regulating immunosuppression and develop novel therapeutic strategies to enhance the efficacy of immune checkpoint blockade (ICB) therapy and mitigate ICB-induced toxicity.
Methods
The expression of SPHK1 in TAMs was determined using laser scanning microscopy and single-cell sequencing databases. The inhibitory effect of SPHK1 blockade alone or combined with ICB on liver metastasis was assessed using an orthotopic mouse model or intrasplenic injection of tumor cells. Flow cytometry and mass cytometry were used to analyze the immune microenvironment in SPHK1-/- knockout mice. The effect of SPHK1 inhibitor PF543 on the ICB-induced toxicity was verified by DSS-induced colitis or humanized mouse model in a combination of ICB. RNA sequencing and western blot were used to further explore the molecular mechanism by which SPHK1 promoted inflammasome activation and IL-1β release.
Results
SPHK1 was selectively expressed by TAMs in CRC, and the abundance of SPHK1+ TAMs was associated with adverse clinical outcomes in CRC patients. In vivo, SPHK1 knockout and inhibition suppressed liver metastasis of CRC and enhanced the anti-tumor activity of ICB. Blocking SPHK1 reduced the infiltration of TAMs and exhausted T cells, and promoted cytotoxicity of CD8+ T cells. Mechanistically, SPHK1/S1P axis led to IL-1β secretion in response to AIM2 and NLRP3 inflammasome activation. SPHK1 inhibitor PF543 and anti-IL-1R alleviated ICB-induced toxicity, including colitis and liver damage. PF543 plus anti-PD-1 therapy could induce complete regression of liver metastasis and mitigate liver dysfunction when further combined with radiotherapy.
Conclusions
Targeting SPHK1 in macrophages could inhibit liver metastasis of CRC and decouple ICB anti-tumor immunity and toxicity.
Legal entity responsible for the study
The authors.
Funding
National Natural Science Foundation of China (No.82103595).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
190P - Immune-related roles of B7H3 in glioblastoma
Presenter: Arnaud Simonet
Session: Poster Display
191P - Senolytic treatment remodels glioblastoma microenvironment
Presenter: Alexa Saliou
Session: Poster Display
192P - Analysis of Tumor-Associated Macrophages and Tumor-infiltrating Lymphocytes within the Tumor Microenvironment of Primary Tumors and Matched Brain Metastases
Presenter: Markus Kleinberger
Session: Poster Display
193P - Engagement of sialylated glycans with Siglec receptors on suppressive myeloid cells inhibit anti-cancer immunity via CCL2
Presenter: Ronja Wieboldt
Session: Poster Display
194P - Achieving Reproducible Maturation Staging of Tertiary Lymphoid Structures: from Imaging Mass Cytometry Data to Pathology Applications
Presenter: Marion Le Rochais
Session: Poster Display
195P - IMMUcan - Toward a better understanding of the tumor microenvironment to inform precision oncology approaches.
Presenter: Marie Morfouace
Session: Poster Display
196P - Local glycan engineering induces systemic antitumor immune reactions via antigen cross-presentation
Presenter: Natalia Rodrigues Mantuano
Session: Poster Display
197P - Computational pathology pipeline enables quantification of intratumor heterogeneity and tumor-infiltrating lymphocyte score
Presenter: Daniel Tiezzi
Session: Poster Display
198P - Polarization of tumor-associated macrophages enhanced by 2-HP-_-cyclodextrin modified PLGA nanoparticles
Presenter: HAO YUAN
Session: Poster Display
199P - Scalable multiplexed image analysis across cancer types as part of the IMMUcan consortium
Presenter: Nils Eling
Session: Poster Display