Abstract 17P
Background
Gastric cancer is a multifaceted condition exhibiting varied responses to treatment, emphasizing the need for tailored therapeutic strategies. This study endeavors to elucidate the cellular interactions and molecular mechanisms that underlie the response to Sintilimab plus SOX (fluorouracil plus oxaliplatin) therapy among gastric cancer patients.
Methods
Single-cell sequencing and multiplex immunohistochemistry (mIHC) were employed to elucidate the spatial characteristics linked to the response of gastric cancer to chemo- and immuno- treatment. By integration of mIHC, feature extraction, and machine learning algorithms, we elucidated the intricate interactions between cellular populations and developed a Support Vector Machine (SVM) model for the prediction of treatment response.
Results
We initially discovered a significant correlation between apical membrane cells and resistance to fluorouracil and oxaliplatin, both crucial components of the treatment regimen. This prompted us to delve into the involvement of apical membrane cells in treatment response. Through a thorough examination of cell interactions, we noted substantial connections between apical membrane cells and resident macrophages. Further analysis of ligand-receptor interactions unveiled specific molecular associations, with TGFB1-HSPB1 and LTF-S100A14 interactions standing out, indicating potential signaling pathways implicated in treatment response. To forecast treatment response, we developed an SVM model integrating six markers (DUOX2, HSPB1, S100A14, C1QA, TGFB1, and LTF), which demonstrated outstanding predictive capacity, achieving high area under the curve (AUC) values of 0.93 in the exploration cohort and 0.84 in the validation cohort.
Conclusions
Our research underscored the importance of integrating multi-omics data alongside spatial information in predictive model, holding the promise of steering personalized therapeutic decisions and enhancing treatment efficacy.
Legal entity responsible for the study
The First Affiliated Hospital, School of Medicine, Zhejiang University.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
36P - Expression of germinal center B cell- and Th17 cell-related transcripts are prognostic of soft-tissue sarcoma patient outcomes
Presenter: Giulia Petroni
Session: Poster Display
38P - Machine learning-based pathomics model to predict the infiltration of Treg and prognosis in IDH-wt GBM
Presenter: Shaoli Peng
Session: Poster Display
40P - The role of low avidity tumour-specific CD8+ T cells in immunotherapeutic response to anti-PD-1
Presenter: Doreen Lau
Session: Poster Display
41P - Contrasting drivers of response to immunotherapy across solid tumour types: results from analysis of >2500 cases
Presenter: Danwen Qian
Session: Poster Display
42P - TCCIA: A Comprehensive Resource for Exploring CircRNA in Cancer Immunotherapy
Presenter: Jian-Guo Zhou
Session: Poster Display
43P - Immune and tumor cells expression of VISTA in a panel of cancer indications: A strategy to inform selection of patients treated with anti-VISTA
Presenter: Pierre Launay
Session: Poster Display
44P - Exploratory Analysis of Peripheral Pharmacodynamic (PD) Biomarkers After Sitravatinib (Sitra) and Tislelizumab (TIS) in Advanced Solid Tumors: SAFFRON-103
Presenter: Yi-Long Wu
Session: Poster Display
45P - Protein biomarkers associated with organ-specific immune-related toxicity and response to management identified by proteome analysis of extracellular vesicles from plasma
Presenter: Anders Kverneland
Session: Poster Display
46P - Immunoprofiling of Peripheral Blood Cells as a Potential Predictor of Immune-Related Toxicity of PD-1 Inhibitors
Presenter: Jan Podhorec
Session: Poster Display