Abstract 17P
Background
Gastric cancer is a multifaceted condition exhibiting varied responses to treatment, emphasizing the need for tailored therapeutic strategies. This study endeavors to elucidate the cellular interactions and molecular mechanisms that underlie the response to Sintilimab plus SOX (fluorouracil plus oxaliplatin) therapy among gastric cancer patients.
Methods
Single-cell sequencing and multiplex immunohistochemistry (mIHC) were employed to elucidate the spatial characteristics linked to the response of gastric cancer to chemo- and immuno- treatment. By integration of mIHC, feature extraction, and machine learning algorithms, we elucidated the intricate interactions between cellular populations and developed a Support Vector Machine (SVM) model for the prediction of treatment response.
Results
We initially discovered a significant correlation between apical membrane cells and resistance to fluorouracil and oxaliplatin, both crucial components of the treatment regimen. This prompted us to delve into the involvement of apical membrane cells in treatment response. Through a thorough examination of cell interactions, we noted substantial connections between apical membrane cells and resident macrophages. Further analysis of ligand-receptor interactions unveiled specific molecular associations, with TGFB1-HSPB1 and LTF-S100A14 interactions standing out, indicating potential signaling pathways implicated in treatment response. To forecast treatment response, we developed an SVM model integrating six markers (DUOX2, HSPB1, S100A14, C1QA, TGFB1, and LTF), which demonstrated outstanding predictive capacity, achieving high area under the curve (AUC) values of 0.93 in the exploration cohort and 0.84 in the validation cohort.
Conclusions
Our research underscored the importance of integrating multi-omics data alongside spatial information in predictive model, holding the promise of steering personalized therapeutic decisions and enhancing treatment efficacy.
Legal entity responsible for the study
The First Affiliated Hospital, School of Medicine, Zhejiang University.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
157TiP - Krascendo-170 Lung: a phase Ib/II study of divarasib + pembrolizumab _ platinum-based chemotherapy and pemetrexed in untreated KRAS G12C+ advanced non-small cell lung cancer (NSCLC)
Presenter: Ferdinandos Skoulidis
Session: Poster Display
159TiP - Two Phase 1 Studies Assessing the Safety and Efficacy of the Small Molecule Oral PD-L1 Inhibitor INCB099280 in Combination with Adagrasib (INCB 99280-204 [Study 204]) or Ipilimumab (INCB 99280-205 [Study 205]) in Adults with Advanced Solid Tumors
Presenter: David Berz
Session: Poster Display
160TiP - Safety and Antitumor Activity of GEN1042 in Combination with Pembrolizumab _ Chemotherapy in Solid Tumors: Phase 2b Dose-Expansion Trial in Progress
Presenter: Ignacio Melero
Session: Poster Display
164P - Disentangling the Joint and Distinct Immunomodulation and Vulnerability Between KEAP1/NFE2L2 and SMARCA4 Alterations in Lung Adenocarcinoma
Presenter: Anlin Li
Session: Poster Display
165P - Immunosuppressive F13A1+ Mo/M_ in the tumor microenvironment as a hallmark for multiple primary lung cancers
Presenter: Jiahao Qu
Session: Poster Display
166P - Three-dimensional (3D) Innervation of Mouse Lungs and Airways in a Lung Metastatic Tumor Model
Presenter: Yan Zhou
Session: Poster Display
167P - Lurbinectedin, a DNA minor groove inhibitor launches a multimodal immune response through activation of the cytosolic DNA-Sensing cGAS-STING pathway.
Presenter: Triparna Sen
Session: Poster Display
168P - Effect of sequence treatment of chemotherapy plus radiotherapy activates innate immunity in SCLC
Presenter: CATERINA DE ROSA
Session: Poster Display
169P - High-dimensional analysis of tumor infiltrating immune cells reveals major differences in the tumor immune microenvironments of pleural mesothelioma and lung cancer
Presenter: Angelica Rigutto
Session: Poster Display