Abstract 201P
Background
Immunotherapy provided a new treatment alternative for cancer, but many patients still do not respond due to tumor-induced immunological dysfunction. Aerobic exercise training (AET) has emerged as a strategy to reduce cancer mortality and improve immune response, however the mechanisms explaining AET benefits immune system on cancer remain unclear. Thus, our aim was to evaluate whether AET could positively modify the tumor microenvironment, favoring infiltration and cytotoxicity of “antitumor” lymphocytes by regulating their mitochondrial content and function.
Methods
Balb/c male mice were submitted to 4 weeks of AET (60% of maximal capacity, 5 days/week, 1 h/day) before inoculation (s.c.,1x106 CT26 colon carcinoma cells). CT26 TR continued AET after inoculation and all groups were euthanized 9 days post tumor cells inoculation for further analysis. Tumor volume was measured daily. Experimental groups were divided into control (healthy sedentary mice), CT26 SED (sedentary tumor-bearing mice) and CT26 TR (trained tumor-bearing mice). Tumor-infiltrated T lymphocytes and mitochondrial density were measured by flow cytometry. Tumor hypoxia was measured by Hypoxyprobe Kit. Mitochondrial morphology was evaluated by electron microscopy and ATP production by an ATP Determination Kit. Statistical analysis: Anova One-way, Duncan post hoc, p<0.05. Ethical approval: CEUA EEFE-USP 2017/02.
Results
CT26 TR mice showed attenuated tumor progression when compared with CT26 SED group, with significant smaller tumor volume and mass. AET significantly reduced tumor hypoxic area compared to CT26 SED group. AET significantly increased the total amount of activated and effector memory CD8+ T cells, and effector memory CD4+ T cells in CT26 TR when compared to CT26 SED in the tumor. Additionally, increased function of T CD8+ cells in CT26 TR was followed by a higher mitochondrial number/cell and function (ATP production) in this cells compared with CT26 SED group.
Conclusions
AET increases tumor-infiltrated cytotoxic/effector CD8+ T cells and improves their mitochondrial content and function. These data suggest that AET can attenuate tumor growth by modulation of tumor-infiltrated lymphocytes number and profile.
Legal entity responsible for the study
The authors.
Funding
São Paulo Research Foundation (FAPESP, 11800-4/2021, 2015/22814-5, and 2017/13133-0).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
189P - The impact of immune microenvironment subopopulations on soft tissue sarcomas
Presenter: Shokhrukhbek Khujaev
Session: Poster Display
190P - Immune-related roles of B7H3 in glioblastoma
Presenter: Arnaud Simonet
Session: Poster Display
191P - Senolytic treatment remodels glioblastoma microenvironment
Presenter: Alexa Saliou
Session: Poster Display
192P - Analysis of Tumor-Associated Macrophages and Tumor-infiltrating Lymphocytes within the Tumor Microenvironment of Primary Tumors and Matched Brain Metastases
Presenter: Markus Kleinberger
Session: Poster Display
193P - Engagement of sialylated glycans with Siglec receptors on suppressive myeloid cells inhibit anti-cancer immunity via CCL2
Presenter: Ronja Wieboldt
Session: Poster Display
194P - Achieving Reproducible Maturation Staging of Tertiary Lymphoid Structures: from Imaging Mass Cytometry Data to Pathology Applications
Presenter: Marion Le Rochais
Session: Poster Display
195P - IMMUcan - Toward a better understanding of the tumor microenvironment to inform precision oncology approaches.
Presenter: Marie Morfouace
Session: Poster Display
196P - Local glycan engineering induces systemic antitumor immune reactions via antigen cross-presentation
Presenter: Natalia Rodrigues Mantuano
Session: Poster Display
197P - Computational pathology pipeline enables quantification of intratumor heterogeneity and tumor-infiltrating lymphocyte score
Presenter: Daniel Tiezzi
Session: Poster Display
198P - Polarization of tumor-associated macrophages enhanced by 2-HP-_-cyclodextrin modified PLGA nanoparticles
Presenter: HAO YUAN
Session: Poster Display