Abstract 114P
Background
To bridge the gap between clinical trial patients and real-world populations, we conducted a comprehensive study in Belgium to characterize cancer patients treated with immune checkpoint inhibitors (ICIs), which have demonstrated survival advantages in various cancer types.
Methods
Retrospective multicenter study in three Belgian hospitals, processing anonymized electronic health records including 10 data sources, using natural language processing (NLP) and machine learning. NLP model validation compared algorithm outputs to a physician-generated standard. The algorithm mapped 597 variables to SNOMED-CT, generating OMOP CDM databases, validated per hospital (federated), ensuring patient privacy. Cancer patients (≥18 years old, regardless of stage) receiving ICIs between March 2017 and August 2022 were included.
Results
Our study included 1,659 patients (median age [IQR]: 67 [60-74]); age categories: 2.4% (18-40 years), 6.1% (41-50), 17.8% (51-60), 35.1% (61-70), and 38.6% (>71). Most patients were male (65.9%). Current/former smokers totaled 43.2%, 18.6% were never smokers, and 38.2% had unknown smoking status. Alcohol abuse was observed in 10.8% of patients and negative/unknown in 89.2%. The most common ICI treatment (monotherapy or with other ICIs or antineoplastic drugs) was pembrolizumab (43.6%), followed by nivolumab (29.7%), atezolizumab (10.7%), ipilimumab (8.7%), durvalumab (4.2%), avelumab (2.1%), cemiplimab (0.8%) and dostarlimab (0.1%). Lung cancer was the most frequent cancer type (54.94%), followed by renal cancer (9.23%), bladder cancer (7.27%), melanoma (6.08%), and head and neck cancer (5.97%). Median overall survival by ICI ranged from 8 to 38 months.
Conclusions
These initial findings highlight the feasibility of automatically extracting and locally validating federated hospital databases- an invaluable tool for real-world data on ICI-treated patients. Comparable datasets would require linking government databases, which cannot be done in a federated manner nor enriched with hospital-level data. Ongoing analyses will explore immune-related adverse events, comorbidities, tumor stage, anatomical pathology, and outcomes in various cancer types and treatment lines.
Legal entity responsible for the study
LynxCare Clinical Informatics NV.
Funding
LynxCare Clinical Informatics NV.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
190P - Immune-related roles of B7H3 in glioblastoma
Presenter: Arnaud Simonet
Session: Poster Display
191P - Senolytic treatment remodels glioblastoma microenvironment
Presenter: Alexa Saliou
Session: Poster Display
192P - Analysis of Tumor-Associated Macrophages and Tumor-infiltrating Lymphocytes within the Tumor Microenvironment of Primary Tumors and Matched Brain Metastases
Presenter: Markus Kleinberger
Session: Poster Display
193P - Engagement of sialylated glycans with Siglec receptors on suppressive myeloid cells inhibit anti-cancer immunity via CCL2
Presenter: Ronja Wieboldt
Session: Poster Display
194P - Achieving Reproducible Maturation Staging of Tertiary Lymphoid Structures: from Imaging Mass Cytometry Data to Pathology Applications
Presenter: Marion Le Rochais
Session: Poster Display
195P - IMMUcan - Toward a better understanding of the tumor microenvironment to inform precision oncology approaches.
Presenter: Marie Morfouace
Session: Poster Display
196P - Local glycan engineering induces systemic antitumor immune reactions via antigen cross-presentation
Presenter: Natalia Rodrigues Mantuano
Session: Poster Display
197P - Computational pathology pipeline enables quantification of intratumor heterogeneity and tumor-infiltrating lymphocyte score
Presenter: Daniel Tiezzi
Session: Poster Display
198P - Polarization of tumor-associated macrophages enhanced by 2-HP-_-cyclodextrin modified PLGA nanoparticles
Presenter: HAO YUAN
Session: Poster Display
199P - Scalable multiplexed image analysis across cancer types as part of the IMMUcan consortium
Presenter: Nils Eling
Session: Poster Display