Abstract 39P
Background
For breast cancer susceptibility, copy number variants (CNVs) represent a class of genetic variation that has been poorly studied and could therefore explain a part of the unknown hereditary risk. CNVs are generally defined as gains or losses of genomic segments with a size of > 1 kilobase. To evaluate the role of rare CNVs in breast cancer susceptibility, here we have performed a whole-exome sequencing based CNV analysis for Northern Finnish high-risk breast cancer cases and verified obtained results with optical genome mapping.
Methods
Optical genome mapping and exome sequencing were performed for 110 high-risk breast cancer cases. All detected rare recurrent candidate CNVs were characterized at nucleotide level with long-read sequencing and genotyped in geographically matched case-control cohorts (altogether 278 hereditary and 1983 unselected breast cancer cases, and 1229 controls).
Results
Three recurrent alterations were detected: a 31 kb deletion co-occurring with a 3 kb retrotransposon insertion in RAD52, a partial 64 kb duplication in RAD51C and a 13 kb deletion in HSD17B14. Of these, RAD52 and RAD51C are involved in DNA damage response pathway, whereas HSD17B14 encodes a protein involved in steroid hormone metabolism in human tissues, including mammary fat. The CNVs that disrupted RAD52and HSD17B14 genes showed around three-fold enrichment (carrier frequencies 2.5% and 2.9%, respectively) among cases with a family history of the disease and/or early disease onset compared to controls (0.9%), suggesting a role for these alterations in breast cancer susceptibility. The RAD51C duplication had two-fold frequency in breast cancer cases compared to controls. Interestingly, we also identified several double-mutants suggesting the potential role of combined effect of moderate-risk alleles in inherited breast cancer risk.
Conclusions
The identification of recurrent CNVs in these genes, and especially the relatively high frequency of RAD52 and HSD17B14 alterations in the Finnish population, highlights the importance of studying CNVs alongside single nucleotide variants when searching for genetic factors underlying hereditary disease predisposition.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
T.A. Kumpula.
Funding
Academy of Finland, the Cancer Foundation of Finland and Sigrid Juselius Foundation.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1792P - Molecular characterization from IMfirst: Atezolizumab plus chemotherapy in extensive-stage small cell lung cancer (ES-SCLC) in Spain
Presenter: Manuel Cobo Dols
Session: Poster session 07
1793P - Treatment and outcomes of limited disease small cell lung cancer (LD-SCLC) in the Canadian small cell lung cancer database (CASCADE)
Presenter: Sara Moore
Session: Poster session 07
1794P - Deciphering ERBB2-driven mechanisms that regulate tumor immune evasion and metastasis in SCLC
Presenter: Lydia Meder
Session: Poster session 07
1795P - Consolidation serplulimab following concurrent hypofractionated chemoradiotherapy for limited-stage SCLC: Preliminary analysis of phase II ASTRUM-LC01 study
Presenter: Yuqi Wu
Session: Poster session 07
1796P - Smoking-related genomic mutation patterns in patients with small cell lung cancer treated in ASTRUM-005 study
Presenter: Ying Cheng
Session: Poster session 07
1798P - Relapsed and refractory systemic therapy real-world outcomes in the Canadian small cell lung cancer database (CASCADE)
Presenter: Sara Moore
Session: Poster session 07
1799P - Efficacy and safety of integrating consolidative thoracic radiotherapy with immunochemotherapy in ES-SCLC: A real-world retrospective analysis
Presenter: Qi Zhang
Session: Poster session 07
1800P - Breaking chemo-immunotherapy resistance in SCLC-patient derived tumor with novel DDRi combinations
Presenter: Carminia Della Corte
Session: Poster session 07
1801P - Expression analysis of Fuc-GM1 ganglioside in first-line therapy for extensive-stage small cell lung cancer (ES-SCLC) with BMS-986012, nivolumab, and carboplatin-etoposide
Presenter: Kenneth O'Byrne
Session: Poster session 07