Abstract 26P
Background
Early cancer detection is crucial for reducing mortality rates, but current screening methods vary widely in age, intervals, and invasiveness. Unfortunately, over 50% of cancer deaths occur in types without recommended screening tests. Non-invasive multi-cancer early detection (MCED) technology could provide a solution.
Methods
We enrolled both healthy individuals (398) and patients diagnosed with stage I-IV colon (107), liver (113), lung (213), prostate cancer (92), gastric (100), pancreatic (113), breast (74), and ovarian (87) cancers for the development of the Multi-Cancer Early Detection (MCED) test. Whole-genome methylation sequencing was performed on tumor and normal tissues at 15X coverage for marker selection, while cell-free DNA was sequenced at 30X coverage to construct the machine learning model. We calculated three genome-wide features: methylation, copy number variation, and fragment-based patterns. For the training set, which comprised 60% of the samples, support vector machine (SVM) algorithms were applied to these features, and ensemble logistic regression was employed to identify cancer signals and tissue-of-origin (TOO) based on scores from the single-feature models. To determine the minimum yield that maintains equivalent performance, we downsampled a 50% fraction of reads from each cfDNA sequencing dataset.
Results
The overall sensitivity of the cancer detection model was 85.7% at the specificity of 95.6%, and TOO accuracy was 81.1%. The sensitivity performance for cancers without recommended screening tests previously, such as pancreatic (83.9%) and ovarian (79.7%) cancer, has also been maintained at a high sensitivity level. In-silico analysis confirmed that reducing coverage to 15X, half of the original, maintains high performance in sensitivity and specificity, significantly lowering data processing requirements.
Conclusions
Proposed MCED method for eight types of cancer, including pancreatic, and ovarian cancer, which were previously difficult to diagnose early, performs with high sensitivity. The reduced coverage of 15X can lower sequencing costs and increase patient accessibility.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
The National Research Foundation, Republic of Korea.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
42P - Correlation of circulating tumor cells with cancer stage
Presenter: Ana Paz
Session: Poster session 07
43P - A redesigned cell atlas of colon cancers to better assess their cellular composition
Presenter: Marine Sroussi
Session: Poster session 07
76P - Improving access to whole genome sequencing for patients with cancer of unknown primary using formalin-fixed paraffin embedded tissues and cell-free DNA
Presenter: Richard Tothill
Session: Poster session 07
77P - Whole-exome mutation profiling of cfDNA from over 2000 samples in major cancer indications
Presenter: Eric Jia
Session: Poster session 07
78P - Real-world analysis of actionable gene fusions identified by NGS and correlation with IHC in 422 patients from the community
Presenter: Husain Hatim
Session: Poster session 07
79P - Comprehensive genomic profiling provides patients access to novel matched therapies in a diverse real-world cohort of advanced lung cancer patients
Presenter: Jyoti Patel
Session: Poster session 07
80P - Development of a next-generation sequencing diagnostics recommender tool in the framework of the molecular tumor board Freiburg
Presenter: Ralf Mertes
Session: Poster session 07
81P - FINPROVE: The Finnish national study to facilitate patient access to targeted anti-cancer drugs – Preliminary data after two years of enrollment
Presenter: Katriina Jalkanen
Session: Poster session 07
82P - Clinical and molecular characteristics of gynecologic cancer patients in FINPROVE: The national phase II drug repurposing trial in Finland
Presenter: Anniina Färkkilä
Session: Poster session 07
83P - Circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) in eary high risk breast cancer: The CITUCEL trial update
Presenter: Roberto Borea
Session: Poster session 07