Abstract 327P
Background
Morphological and vascular peculiarities of breast cancer can change during neoadjuvant chemotherapy (NAC). Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) acquired pre- and mid-treatment quantitatively capture information about tumour heterogeneity as potential earlier indicators of pathological complete response (pCR) to NAC in breast cancer. This study aimed to develop an ensemble deep learning-based model, exploiting a Vision Transformer (ViT) architecture, which merges features automatically extracted from five segmented slices of both pre- and mid-treatment exams containing the maximum tumour area, to predict and monitor pCR to NAC.
Methods
Imaging data analysed in this study referred to a cohort of 86 breast cancer patients, randomly split into training and test cohorts at a ratio of 8:2, who underwent NAC and for which information regarding the pCR achievement was available (37.2% of patients achieved pCR). As far as we know, our research is the first proposal using ViTs on DCE-MRI exams to monitor pCR over time during NAC.
Results
The performances of the proposed model were assessed using standard evaluation metrics and promising results were achieved: AUC value of 91.4%, accuracy value of 82.4%, a specificity value of 80.0%, a sensitivity value of 85.7%, precision value of 75.0%, F-score value of 80.0%, G-mean value of 82.8%.
Conclusions
Finally, the heterogeneity changes in DCE-MRI at pre- and mid-treatment could affect the accuracy of pCR prediction to NAC.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Raffaella Massafra.
Funding
Ministry of Health.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
301P - Changes in lipid-levels following aromatase inhibitor treatment in early postmenopausal breast cancer
Presenter: Marie Lund
Session: Poster session 14
302P - Perceptions of women with HER2+ breast cancer on the risk of recurrence and disease management: Results from the ASKHER survey
Presenter: Matteo Lambertini
Session: Poster session 14
303P - Predicting quality of life trajectories in young women with breast cancer: 5-year results from a large prospective cohort
Presenter: Bryan Vaca-Cartagena
Session: Poster session 14
304P - Impact of estrogen receptor positivity for adjuvant endocrine therapy in luminal T1a/bN0M0 breast cancer: A multi-institutional retrospective observational study
Presenter: Shinsuke Sasada
Session: Poster session 14
305P - Prognosis of isolated locoregional recurrence after early breast cancer with immediate breast reconstruction surgery: A retrospective multi-institutional study
Presenter: Hirohito Seki
Session: Poster session 14
306P - Patient-reported symptoms in early breast cancer and future cardiovascular events: A province-wide administrative database study
Presenter: Edith Pituskin
Session: Poster session 14
307P - Exposure to Di-2-ethylhexyl phthalate and breast cancer incidence: A cohort study
Presenter: Lijuan Tang
Session: Poster session 14
308P - Impact of the COVID-19 (C19) pandemic on breast cancer (BC) treatment patterns in the US
Presenter: Mariana Chavez Mac Gregor
Session: Poster session 14
310P - Identification of racial disparities across MammaPrint and BluePrint subtypes in HR+HER2- breast cancer
Presenter: Sonya Reid
Session: Poster session 14