Abstract 1214P
Background
Accurate prediction of lung cancer recurrence risk is crucial for treatment decisions and follow-up, particularly for Stage I patients who are not eligible for (neo-)adjuvant therapy but approximately one-third still recur after surgical resection. We present a machine learning model that uses patient computed tomography (CT) images and clinical features to predict lung cancer recurrence.
Methods
A dataset of 968 clinical stage I-III lung cancer patients who underwent surgical resection was gathered from the US National Lung Screening Trial, the North Estonia Medical Centre, the Stanford University School of Medicine and Palo Alto Veterans Affairs Healthcare System. 313/968 had lung cancer recurrence, of which 221/776 were Stage 1. The pre-operative survival model was trained to predict the likelihood of recurrence at each time-point using radiomic features extracted from CT images and relevant clinical variables. An 8-fold cross-validation strategy was used and performance evaluated using the time-dependent Area-Under-the-ROC-Curve (AUC), disease-free survival (DFS), hazard ratio (HR) and log-rank test against clinical staging alone.
Results
The ML survival model was better able to stratify patients into high and low-risk (HR=2.7, p
Conclusions
The ML survival model outperforms clinical staging in patient risk-stratification and time-dependent lung cancer recurrence prediction. With further development, this algorithm could prove a valuable tool to aid the management of lung cancer patients.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Optellum.
Disclosure
A. Gasimova, B. Heames, N. Waterfield Price: Financial Interests, Institutional, Other, Employee: Optellum. G. Hodgkinson: Financial Interests, Institutional, Other, Employee: Medtronic. L. Freitag: Financial Interests, Institutional, Advisory Board: Optellum. All other authors have declared no conflicts of interest.
Resources from the same session
1101P - Efficacy of anti PD-1 therapy in children and adolescent melanoma patients (MELCAYA study)
Presenter: Mario Mandalà
Session: Poster session 04
1102P - Immune checkpoint inhibitor rechallenge after treatment with tumor-infiltrating lymphocytes in unresectable melanoma
Presenter: Allison Betof Warner
Session: Poster session 04
1103P - Real-world efficacy of relatlimab and nivolumab in advanced or resectable melanoma
Presenter: Lilit Karapetyan
Session: Poster session 04
1104P - Early time-point <sup>18</sup>F-FDG-PET/CT at week four (W4) as a prognostic biomarker of survival in metastatic melanoma (mM) patients (pts) on immunotherapy
Presenter: Nezka Hribernik
Session: Poster session 04
1105P - Predicting the outcomes of advanced cutaneous melanoma cases following discontinuation of immune checkpoint inhibition
Presenter: Ka-won Noh
Session: Poster session 04
1106P - NivoLag-when: International real-world study of combination immunotherapy sequences in melanoma
Presenter: Mora Guardamagna
Session: Poster session 04
1107P - Characteristics and quality of life of nine-year survivors from 312 patients with metastatic melanoma treated with pembrolizumab
Presenter: Jessica Hassel
Session: Poster session 04
1108P - Impact of quantitative imaging of all disease on the prognostic value of <sup>18</sup>F-FDG PET/CT in patients treated with immunotherapy for metastatic melanoma
Presenter: Robert Jeraj
Session: Poster session 04
1109P - Association of clinical features with long-term survival in patients with melanoma who responded to distinct checkpoint inhibitors
Presenter: Eva Ellebaek
Session: Poster session 04
1110P - Follow-up brain imaging in patients with melanoma brain metastasis and immune checkpoint inhibitors
Presenter: Imren Ozdamar
Session: Poster session 04