Abstract 1174P
Background
Cell-free DNA (cfDNA) obtained from minimally invasive liquid biopsies holds promise as a biomarker for early cancer detection, offering a molecular snapshot of the patient's condition. However, current methods lack the sensitivity required for early cancer detection. RenovaroCube ("The Cube"), an AI platform for cancer diagnostics, recognizes that no single model or approach can achieve the necessary sensitivity alone. Thus, The Cube integrates multi-omic data, employing a library of trained models for various omic layers. One such model, Flamingo, focuses on detecting cancer from cfDNA sequencing data using fragmentomics.
Methods
Flamingo utilizes mapping coordinates from as few as 200,000 cfDNA fragments per patient, extracted from Delfi cfDNA WGS experiments. Fragment lengths, sequence motifs, and Shannon entropy of the motifs are analysed, serving as input for Flamingo—a neural network trained to differentiate cancer from healthy samples. Performance evaluation via cross-validation on a training cohort (n=136 healthy, n=127 cancer) and validation on a separate cohort (n=55 healthy, n=48 cancer) demonstrated Flamingo's robustness.
Results
Using the Delfi dataset, Flamingo achieved a median AUROC of 0.952 and a sensitivity of 74.2% at 98% specificity during cross-validation. In the validation set, Flamingo maintained high specificity (98.2%) and sensitivity (75.0%), with an AUROC of 0.966, confirming its generalizability beyond the training dataset. Flamingo and the Delfi model identified non-overlapping cancer cases, supporting our belief that multiple models and modalities are required for comprehensive cancer detection.
Conclusions
In summary, Flamingo, developed from minute amounts of cfDNA WGS data, performs comparably to state-of-the-art cancer detection models. Integrated into The Cube platform, Flamingo enhances cancer detection across diverse omic layers, facilitating early intervention and improved patient outcomes.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
D. Vessies, T. Bucho, E. Post, K. Roohollahi, J. van den Berg, A. Foster, S. Patel, A. Vandor, D. Makarawung: Financial Interests, Personal, Full or part-time Employment: RenovaroCube; Financial Interests, Personal, Stocks/Shares: RenovaroCube. F. van Asch: Financial Interests, Personal, Member of Board of Directors: RenovaroCube; Financial Interests, Personal, Stocks or ownership: RenovaroCube; Financial Interests, Personal, Ownership Interest: RenovaroCube.
Resources from the same session
212P - BRGSF-HIS mice as a predictive tool for safety assessment of biologics
Presenter: Kader Thiam
Session: Poster session 09
213P - Constructing a high-definition patient-digital twin (PDT) in treatment-naïve women with advanced cancer
Presenter: Leonardo Garma
Session: Poster session 09
215P - Detection of MUTYH for the prognosis and chemotherapy responsiveness of patients with non-small cell lung cancer
Presenter: Chi Wai Wong
Session: Poster session 09
216P - β-catenin is a potential prognostic biomarker in uterine sarcoma
Presenter: Ying Cai
Session: Poster session 09
218P - Exploiting a unique glycosaminoglycan for novel pan-cancer therapies and diagnostics
Presenter: Mette Agerbæk
Session: Poster session 09
219P - The landscape and prognostic impact of germline HLA-A subtypes in patients with advanced solid cancers
Presenter: Kyrillus Shohdy
Session: Poster session 09
220P - The role of fucosyltransferase 1 (FUT1) in CRC as a putative prognostic and predictive biomarker
Presenter: Lorenz Pammer
Session: Poster session 09
221P - ANGPTL4's role in cancer: A meta analysis and bioinformatics exploration
Presenter: Osama Younis
Session: Poster session 09
222P - Artificial intelligence (AI) based prognostication from baseline computed tomography (CT) scans in a phase III advanced non-small cell lung cancer (aNSCLC) trial
Presenter: Omar Khan
Session: Poster session 09