Abstract 832P
Background
Treating pediatric acute B-cell lymphoblastic leukemia (pB-ALL) who experience central nervous system relapses (CNSR) is challenging and often results in high mortality rates. The aim of this study was to develop and validate a predictive model for CNSR in pB-ALL, allowing for early identification and assessment.
Methods
1495 patients of pB-ALL patients from the TARGET database were randomly assigned to a training cohort of 1079 patients and an internal validation cohort of 416 patients. Multi-variable COX regression analysis was applied to construct the model using the training cohort. The validation cohorts comprised of an internal validation cohort and an external validation cohort consisting of Chinese patients. The analysis was conducted using consistency index (C-index), AUROC, Kaplan-Meier curves, calibration curve, and decision curve analysis to evaluate this model.
Results
The prediction model for CNSR in pB-ALL, named CLOMB, was constructed using indicators selected from the training cohort. The model had a C-index of 0.748 and was found to be highly accurate in predicting CNSRs in both the training and validation cohorts, as determined by AUROC measures. A statistically significant difference in event-free survival was observed between pB-ALL patients divided into CNSR high-risk and low-risk groups using the CLOMB calculated risk score of 0.76 as a cut-off value. In the external validation cohort, CLOMB had an AUROC of 0.590, which was significantly higher than MRD on days 19 and days 46.
Conclusions
The newly developed predictive model, CLOMB, has shown strong power and utility in CNS relapse prediction and risk stratification, which may help modify treatment options in clinical routine.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
National Natural Science Foundation of China.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
825P - Ultra-sensitive cfDNA analysis for minimally invasive measurable residual disease detection and profiling in multiple myeloma
Presenter: Natalia Buenache
Session: Poster session 09
826P - Efficacy of non-doxorubicin based regimens in severely G6PD deficient patients with DLBCL
Presenter: Shruti Prem Sudha
Session: Poster session 09
827P - Comparison of efficacy and safety between glofitamab and real-world regimens among Chinese patients with 3L+ relapsed/refractory diffuse large B-cell lymphoma: An external control study
Presenter: Keshu Zhou
Session: Poster session 09
828P - Translocation 11;14 is not associated with adverse prognosis in the era of novel anti-myeloma therapeutics
Presenter: Ioannis Ntanasis-Stathopoulos
Session: Poster session 09
829P - Flumatinib combined with chemotherapy for newly diagnosed adult with Ph-positive acute lymphoblastic leukemia: A single-center, retrospective observational study
Presenter: HAN SHUYU
Session: Poster session 09
830P - Prognostic model of pediatric AML patients with RUNX1-RUNX1T1 fusion gene
Presenter: Yang Xun
Session: Poster session 09
Resources:
Abstract
831P - Impact of chronic kidney disease on disease outcomes in hospitalized multiple myeloma patients: A National inpatient sample study from 2016 to 2020
Presenter: Marco Bermudez
Session: Poster session 09
Resources:
Abstract
833P - Latest results of GVM±R regimen for the salvage therapy of patients with relapsed or refractory aggressive non-Hodgkin's lymphoma
Presenter: Wei Liu
Session: Poster session 09
834P - Treatment of DLBCL in HIV patient: Still a dilemma
Presenter: Devashish Desai
Session: Poster session 09
835P - Genetic, epigenetic, and clinical significance of Wilms’ tumor 1 (WT1) gene in acute myeloid leukemia
Presenter: Harsh Goel
Session: Poster session 09
Resources:
Abstract