Abstract 17P
Background
Gastric cancer (GC) is the fifth most common malignancy worldwide and the fourth leading cause of cancer-related death. When tumor resection is not possible, the perioperative chemotherapy (pCT) FLOT (Leucovorin, 5-Fluouracil, Docetaxel, and Oxaliplatin) represents the standard of care, at least in Europe, to enhance patients' overall survival. However, chemoresistance onset inevitably hampers treatment efficacy. Recently, we identified carbonic anhydrase IX (CAIX) as a promising target in GC patients, as its expression was correlated with resistance to the pCT regimen. Moreover, pre-clinical evidence showed that CAIX inhibition by the SLC-0111 compound - currently under phase Ib clinical trial for metastatic ductal pancreatic cancer – allowed boosted therapy response even in resistant GC cells. Our ongoing study aims to explore the mechanisms behind SLC-0111-induced cytotoxicity in GC and its ability to induce immunogenic cell death (ICD), thereby potentially triggering a broad anti-cancer immune response.
Methods
SLC-0111 and FLOT were administered as mono- or combined therapies to sensitive and FLOT-resistant GC cell lines. Cell death pathways and Damage Associated Molecular Patterns (DAMPs) expression by dying GC cells were assessed through flow cytometry (FC), ELISA, luminometry, and immunofluorescence. The phenotype of immune cells exposed to dying GC cells was evaluated in vitro by qPCR, FC, and ELISA techniques.
Results
Apoptotic and non-apoptotic immunogenic cell deaths such as alkaliptosis and ferroptosis were observed in GC subjected to the SLC-0111/FLOT treatment. Analysis of DAMPs showed increased cytoplasmic dsDNA levels, heightened Calreticulin and Annexin A1 exposure, and elevated release of High Mobility Group Box 1 and ATP by GC cells treated with SLC-0111/FLOT compared to the control group. Macrophage exposure to such a DAMP-enriched microenvironment resulted in M1 activation.
Conclusions
In summary, our findings indicate that the SLC-0111/FLOT combination therapy not only enhances treatment efficacy and restores sensitivity in resistant GC cells but also has the potential to induce ICD, which may stimulate an anti-cancer immune response to combat tumor progression.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
L. Papucci.
Funding
Italian Ministry of University and Research.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
42P - Correlation of circulating tumor cells with cancer stage
Presenter: Ana Paz
Session: Poster session 07
43P - A redesigned cell atlas of colon cancers to better assess their cellular composition
Presenter: Marine Sroussi
Session: Poster session 07
76P - Improving access to whole genome sequencing for patients with cancer of unknown primary using formalin-fixed paraffin embedded tissues and cell-free DNA
Presenter: Richard Tothill
Session: Poster session 07
77P - Whole-exome mutation profiling of cfDNA from over 2000 samples in major cancer indications
Presenter: Eric Jia
Session: Poster session 07
78P - Real-world analysis of actionable gene fusions identified by NGS and correlation with IHC in 422 patients from the community
Presenter: Husain Hatim
Session: Poster session 07
79P - Comprehensive genomic profiling provides patients access to novel matched therapies in a diverse real-world cohort of advanced lung cancer patients
Presenter: Jyoti Patel
Session: Poster session 07
80P - Development of a next-generation sequencing diagnostics recommender tool in the framework of the molecular tumor board Freiburg
Presenter: Ralf Mertes
Session: Poster session 07
81P - FINPROVE: The Finnish national study to facilitate patient access to targeted anti-cancer drugs – Preliminary data after two years of enrollment
Presenter: Katriina Jalkanen
Session: Poster session 07
82P - Clinical and molecular characteristics of gynecologic cancer patients in FINPROVE: The national phase II drug repurposing trial in Finland
Presenter: Anniina Färkkilä
Session: Poster session 07
83P - Circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) in eary high risk breast cancer: The CITUCEL trial update
Presenter: Roberto Borea
Session: Poster session 07