Abstract 1431P
Background
Neoadjuvant chemotherapy combined with immunotherapy (nCIT) is emerging as a promising strategy for treating patients with esophageal cancer. We aimed to develop a novel, voxel-level radiomics deep learning model to predict the pathological complete response (pCR) to nCIT in esophageal squamous cell carcinoma (ESCC).
Methods
We included 745 ESCC patients from three institutions, comprising a training set (N=500, institution 1), test-set-1 (N=86, institution 1), test-set-2 (N=34, institution 2), and test-set-3 (N=125, institution 3). All patients underwent nCIT and received a pathological evaluation post-surgery. A total of 104 distinct radiomic features were extracted from the tumor areas in CT images prior to nCIT. Features demonstrating predictive power with an area under the receiver operating characteristic curve (AUROC) exceeding 0.6 were retained. Each selected radiomics feature map, along with the original image, was input into a vision transformer model as a separate channel. The Shapley Additive exPlanations method was employed to visualize feature importance and identify predictive regions within the tumor, enhancing the model’s interpretability. For baseline comparison, we also constructed a clinical model using only clinical factors, and compared it against traditional radiomics and ResNet models.
Results
The voxel-level radiomics deep learning model achieved an AUC of 0.825 with an accuracy of 76.2% in test-set-1, 0.751 and 68.5% in test-set-2, and 0.819 with 78.1% in test-set-3, respectively. It demonstrated superior predictive performance compared to the clinical model, traditional radiomics model, and ResNet model.
Conclusions
This innovative and noninvasive voxel-level radiomics deep learning approach offers an efficient and accurate approach of predicting treatment response to nCIT in ESCC, potentially benefiting clinical decision-making.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Z. Zhang.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1426P - BL-B01D1, an EGFR x her3 bispecific antibody-drug conjugate (ADC), in patients with locally advanced or metastatic esophageal squamous cell carcinoma (ESCC)
Presenter: Liu Chang
Session: Poster session 17
1427P - Predicting overall survival and prognostic indicator genes in esophagogastric cancer patients using machine learning and bioinformatics analysis
Presenter: Nguyen-Kieu Viet-Nhi
Session: Poster session 17
1428P - Total neoadjuvant FLOT chemotherapy in oesophagogastric adenocarcinoma: An international cohort study
Presenter: Hollie Clements
Session: Poster session 17
1429P - Differences in esophageal cancer incidence and survival by race/ethnicity: A SEER analysis
Presenter: Ashwin Kulshrestha
Session: Poster session 17
1430P - Impact of menadione supplementation in the treatment of patients with metastatic gastric cancer: A randomized phase II clinical trial
Presenter: Francisco Cezar Moraes
Session: Poster session 17
1432P - Safety of laparoscopic D2 distal gastrectomy following neoadjuvant chemotherapy for locally advanced gastric cancer patients: A prospective multicenter trial (CLASS-03a)
Presenter: Kun Yang
Session: Poster session 17