Abstract 34P
Background
Resilience to stress is a central phenotype underlying cancer cell biology. Cancer resilience empowers cell growth and survival in the face of harsh microenvironments, cytotoxic therapies, and loss of normal cellular regulatory processes. By understanding the mechanisms underlying cancer cell resilience, we may develop therapies which constrain tumors generally or synergize with existing drugs. Here, we sought to identify yet-unknown mechanisms by which cancer cells orchestrate resilience.
Methods
Using genome-scale CRISPR-Cas9 screening data from over 700 unique cancer cell lines (DepMap project), we developed a guilt-by-association “coessentiality” approach to identify genes involved cellular stress response signaling. We then used a combination of molecular biology, evolutionary biology, and computational biology approaches to validate predictions.
Results
Using an unbiased functional genomic approach and subsequent molecular validation, we identified HAPSTR1 (formerly: C16orf72) as a gene which becomes particularly important to cancer cells under stress conditions (e.g., DNA damage, protein aggregation, nutrient starvation). HAPSTR1, despite conservation through worms, yeast, and plants, had no known function. We found that HAPSTR1 encodes a dimeric protein which enables nuclear localization of HUWE1, an otherwise cytoplasmic ubiquitin ligase. Additionally, we show that mammals have a second HAPSTR gene, HAPSTR2 (formerly: RP11-364B14.3), which formed via an atypical evolutionary mechanism and functions to buffer the HAPSTR-HUWE1 pathway in specific cancer subsets.
Conclusions
Altogether, we present a new gene family and biochemical pathway leveraged by cancer cells to empower resilience. Disruption of this pathway broadly impairs stress response regulation and may thus be relevant to understanding and targeting resilience in human tumors.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
National Institutes of Health (NIH-USA).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
42P - Correlation of circulating tumor cells with cancer stage
Presenter: Ana Paz
Session: Poster session 07
43P - A redesigned cell atlas of colon cancers to better assess their cellular composition
Presenter: Marine Sroussi
Session: Poster session 07
76P - Improving access to whole genome sequencing for patients with cancer of unknown primary using formalin-fixed paraffin embedded tissues and cell-free DNA
Presenter: Richard Tothill
Session: Poster session 07
77P - Whole-exome mutation profiling of cfDNA from over 2000 samples in major cancer indications
Presenter: Eric Jia
Session: Poster session 07
78P - Real-world analysis of actionable gene fusions identified by NGS and correlation with IHC in 422 patients from the community
Presenter: Husain Hatim
Session: Poster session 07
79P - Comprehensive genomic profiling provides patients access to novel matched therapies in a diverse real-world cohort of advanced lung cancer patients
Presenter: Jyoti Patel
Session: Poster session 07
80P - Development of a next-generation sequencing diagnostics recommender tool in the framework of the molecular tumor board Freiburg
Presenter: Ralf Mertes
Session: Poster session 07
81P - FINPROVE: The Finnish national study to facilitate patient access to targeted anti-cancer drugs – Preliminary data after two years of enrollment
Presenter: Katriina Jalkanen
Session: Poster session 07
82P - Clinical and molecular characteristics of gynecologic cancer patients in FINPROVE: The national phase II drug repurposing trial in Finland
Presenter: Anniina Färkkilä
Session: Poster session 07
83P - Circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) in eary high risk breast cancer: The CITUCEL trial update
Presenter: Roberto Borea
Session: Poster session 07