Abstract 35P
Background
The DNA damage repair pathway plays a crucial role in signalling for effective DNA repair and cell cycle progression. DNA double-strand breaks (DSBs) are primarily repaired by homologous recombination. Acting downstream of ATR, ATM and PARP, RAD51 is a central recombinase in HR-mediated DDR pathway that participates in DSB repair via interaction with BRCA2, followed by its nuclear translocation. RAD51:BRCA2 interaction disruptors represent a first-in-class anticancer target with therapeutic potential in refractory solid tumors.
Methods
Binding of SAT-122 to RAD51 and its interaction with BRC4 was determined using Surface Plasmon Resonance (SPR) and pull-down of the RAD51:BRC4 complex, respectively. Downstream modulation of RAD51 and gamma H2AX foci, along with effect on cell cycle was studied. Antiproliferative effects of SAT-122 was evaluated in a panel of multiple solid tumor cell lines. Selectivity was evaluated in a kinase panel. Nanostring based evaluation of pathway-related genes following incubation of cells with SAT-122 was conducted. In Vivo efficacy was evaluated in NCI-H358 and MDA-MB-231 xenograft models.
Results
SAT-122 binds to RAD51 and disrupts RAD51:BRCA2 interaction with an IC50 of 20 nM. Fluorescent microscopy studies indicated a dose dependent reduction of RAD51 foci, and an increase in g-H2AX foci at 500 nM. FACS analysis demonstrated arrest at late S and G2 phase with subsequent apoptosis. SAT-122 inhibited proliferation of over 30 different cancer cell lines at IC50ranging from 150-800 nM. Biochemical selectivity was established against a 345-kinase panel. RNA seq studies suggested modulation of multiple genes in the homologous recombination repair (HRR) pathway in line with the mechanism. In vivo translation was confirmed in NCI-H358 and MDA-MB-231 xenograft models with TGI of >70% and 50%, respectively. Pharmacokinetic studies and tolerability studies in rodents, revealed sufficient exposures, along with a wide therapeutic window.
Conclusions
SAT-122 is a novel and potent disruptor of RAD51:BRCA2 with potential to be used in the DDR context, in solid tumors. IND-enabling studies are ongoing with clinical trials planned in H1 2024.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Satyarx Pharma Innovations Pvt Ltd.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
89P - Cold atmospheric plasma-activated fluids as a potential new intravesical agent for the treatment of bladder cancer
Presenter: Maria Filomena Botelho
Session: Poster session 09
90P - Discovery of CMPD1 as a tumor-specific cytotoxic microtubule inhibitor
Presenter: Mamoru Takada
Session: Poster session 09
91P - Erythroid precursor-differentiated myeloid cells promote pulmonary metastasis in hepatocellular carcinoma
Presenter: Wei-hang Zhu
Session: Poster session 09
92P - Discovery of novel AXL and MER inhibitors as potential anticancer and immune modulator drugs
Presenter: Hsing-Pang Hsieh
Session: Poster session 09
93P - Transcriptome changes of immune cells across chemotherapy of triple-negative breast cancer
Presenter: Tatiana Gerashchenko
Session: Poster session 09
509P - Spatial analysis of tumor-associated macrophages within the tumor microenvironment of primary tumors and matched brain metastases
Presenter: Markus Kleinberger
Session: Poster session 09
510P - CD47 regulates cellular and metabolic plasticity in glioblastoma
Presenter: Ruhi Polara
Session: Poster session 09
511P - Immunodisruptive conditions and glioma diagnosis: 24-year retrospective study of an under-recognized scenario
Presenter: Santiago Cabezas-Camarero
Session: Poster session 09
512P - Heterozygous germline Fanconi anemia-related gene mutations increase susceptibility to central nervous system germ cell tumors
Presenter: Guangyu Wang
Session: Poster session 09
513P - Cyclin pathway in oligodendrogliomas IDH mut and 1p/19q codeleted
Presenter: Maria Angeles Vaz Salgado
Session: Poster session 09