Abstract 1266P
Background
Pulmonary nodules (PNs) are frequently detected on CT scans and may indicate early lung cancer. Among PNs, management of ground-glass nodules (GGNs) can be particularly challenging due to their long, often indolent natural course. When malignant, they are usually lepidic adenocarcinomas, for which many targeted therapies exist. Artificial Intelligence (AI)-based malignancy prediction of PNs using CT images has been demonstrated to perform well on solid and part-solid PNs. Here, we aimed to extend one such AI model to GGNs.
Methods
GGN nodules and predominantly-GGN part-solid nodules were collected from 3 sites: two UK, one US. Patients with a 5-30mm nodule on non-contrast CT were included, unless they had a history of cancer in the past 5 years, >5 nodules, or insufficient outcome data from long-term follow-up or histological diagnosis. Scans with >2.5mm slice spacing or significant imaging artifacts were excluded. The most concerning nodule on each CT study was evaluated, giving 169 cancers in 57 patients, and 347 benign nodules in 180 patients. Most patients were enrolled through a text search of radiology reports, and enriched for malignant nodules based on local data. The AI tool is based on a commercial system, further trained using GGNs from an additional UK site. Ability to predict malignancy was evaluated using the Area Under the Receiver Operating Characteristic curve (AUC) and compared to two reference models. The ability to rule benign cases out of follow-up was evaluated by calculating specificity at 100% sensitivity.
Results
The AUC of the AI model was 89.1 [95%CI, 86.3, 91.8], while the AUC of the reference models, Brock and Mayo, were 86.5 95%CI [95% CI, 83.2, 89.6; p=0.39 vs. AI] and 80.9 [95%CI76.9, 84.8; p<0.01 vs. AI] respectively. The percentage of benign GGNs ruled out for cancer at 100% sensitivity were 48.7% for the AI model, 14.1% for Brock, and 16.7% for Mayo.
Conclusions
To our knowledge, this is the first study to demonstrate the potential value of an AI model in predicting the malignancy risk of GGNs. Implementation of such models in clinical practice could lead to more appropriate use of invasive interventions among GGN patients, thereby improving patient outcomes.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Optellum.
Disclosure
A. Vachani: Financial Interests, Institutional, Research Grant: MagArray, Precyte, Optellum. L. Freitag: Financial Interests, Personal, Leadership Role: Optellum. F. Gleeson: Financial Interests, Personal, Stocks/Shares: Optellum. All other authors have declared no conflicts of interest.
Resources from the same session
488P - Comprehensive genomic profiling to identify actionable alterations for breast cancer brain metastases in the Chinese population
Presenter: Qianyi Lu
Session: Poster session 04
489P - Liquid biopsy with combination of cell & cell-free analysis identifies HER2-expression in patients with metastatic breast cancer
Presenter: Fengting Yan
Session: Poster session 04
491P - Comparison of ctDNA profiles from HR+/HER2-low and HR+/HER2-0 advanced breast cancer patients
Presenter: Nina Dobrić
Session: Poster session 04
492P - Wound stress stimulation promotes lung metastasis of breast cancer by regulating CXCL12/CXCR4 axis through MDSC exosome miR-126a-5p
Presenter: Xiaomeng Yin
Session: Poster session 04
493P - Identifying genomic changes in breast tumours that metastasise to the brain
Presenter: Ivonne Olivares
Session: Poster session 04
494P - Proviral insertion in murine 1 (PIM1) kinase expression and clinical outcomes in advanced breast cancer (ABC)
Presenter: Stephanie Graff
Session: Poster session 04
495P - Prognostic value of PIK3CA mutational status in tissue & plasma in HR+/HER2- breast cancer (BC)
Presenter: Rebeca Lozano Mejorada
Session: Poster session 04
496P - Comprehensive genomic profiling of advanced HR+/HER2- breast cancer patients using liquid biopsy
Presenter: Bin Shao
Session: Poster session 04
497P - Metastatic potential of the somatic alteration associated with TCA-cycle in breast cancer
Presenter: Narumi Harada
Session: Poster session 04