Abstract 2311P
Background
Interleukin-2 receptor (IL2R) and cytotoxic T-lymphocyte-associated protein 4 (CTLA4) are key immunotherapeutic targets in cancer treatment. GI-101, a novel bispecific Fc fusion protein, targets both CTLA4 and IL2Rβγ, offering potential for improved patient outcomes. This study developed a mathematical model linking GI-101 pharmacokinetics (PK), absolute lymphocyte count (ALC) dynamics, and progression-free survival (PFS) to optimize the biological dose for maximal therapeutic benefit.
Methods
Preclinical monkey (n=74) and phase 1/2 human (n=31) data of GI-101 were used for model development. The dataset was randomly split into training and test datasets at a ratio of 7 to 3, and the final model was validated using the test dataset. Data from a phase 1/2 clinical trial were analyzed using a random survival forest algorithm to assess the effect of immune cell dynamics on PFS. Potential dose-response correlations were assessed for Grade 3 or 4 treatment-related adverse events (TrAE) and immune-related adverse events (irAE) using logistic regression. Stochastic simulations determined the optimal biological dose (OBD) to achieve the target peak ALC.
Results
A pharmacodynamics-mediated drug disposition (PDMDD) model adequately described drug pharmacokinetics, captured changes of cell count across all lymphocyte subsets, and demonstrated strong performance in the test dataset. Random survival forest analysis of the GI-101 clinical data revealed that peak total lymphocyte (p=0.00191) and CD8+ T cell (p=0.00515) counts significantly predicted PFS. There was no significant dose-response correlation for TrAE (p=0.66) and irAE (p=0.92). Simulations suggested an OBD of 0.3 mg/kg every three weeks, achieving target peak total lymphocyte and CD8+ T cell counts of 2,000 cells/μL and 350 cells/μL, respectively.
Conclusions
Our findings underscore the value of translational mathematical modeling for informing optimal dosing strategies in novel immunotherapies targeting IL2βγR and CTLA4. The identified OBD merits further investigation in clinical trials to validate its potential for enhancing patient outcomes.
Clinical trial identification
NCT04977453
Editorial acknowledgement
Legal entity responsible for the study
GI Innovation, Inc.
Funding
GI Innovation, Inc.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
2315P - Clinical and blood immune-inflammatory profiling to decode different patterns of acquired resistance in immunotherapy treated NSCLC patients
Presenter: Giulia Mazzaschi
Session: Poster session 08
2316P - Integrating comprehensive cancer genome profiling into clinical practice in an Italian referral center: Results of the first year of the fpg500 programme
Presenter: Camilla Nero
Session: Poster session 08
2317P - Mutational landscape and therapeutic implications in squamous cell carcinomas
Presenter: Laila Belcaid
Session: Poster session 08
2318P - Value of broad molecular profiling for cancer diagnosis
Presenter: Lars Volker Anton Werstein
Session: Poster session 08
2319P - CADSP: A web tool for comprehensive drug sensitivity analysis in pan-cancer
Presenter: Kexin Li
Session: Poster session 08
2320P - Detection of gene fusion-induced neoepitopes in dedifferentiated liposarcoma
Presenter: Peter Horak
Session: Poster session 08
2321TiP - TEMPLE: Thiopurine enhanced mutations for PD-1/ligand-1 efficacy: A phase Ib/II clinical trial
Presenter: Christine Federspiel Secher
Session: Poster session 08
2322TiP - SOUND: A phase II trial evaluating the efficacy of molecular profiling of circulating ± tumor tissue DNA for salvage-therapy matching in patients with advanced and refractory carcinoma
Presenter: Jakob Riedl
Session: Poster session 08