Abstract 2307P
Background
Loss of heterozygosity (LOH) is a frequent event in cancer, that is caused by larger chromosomal deletions in cancer cells due to genetic instability [TS1] (Mertens et al., 1997). Thus heterozygous individuals become hemi- or homozygous for certain genes, which might change the phenotype of a cancer cell compared to normal cells (Muller et al., 2012), (Dey et al., 2017). This change might create an opportunity to selectively target cancer cells while sparing normal cells ( Rendo et al., 2020).
Methods
To find potential drug targets, data from the 1000 Genomes project was analyzed to identify prevalent constitutional loss-of-function (LoF) SNPs in coding regions causing truncating or splice site mutations with allele frequency >0.5[TS1] [NR2] %, heterozygosity between 10% and 90% of potential relevance in cancer cells. The drug metabolic gene CYP2D6 was selected and isogenic cell models were established in HEK293T and HepG2 cells. A chemical library of a total of 525 compounds was screened using HEK293T cells harboring a functional or loss-of-function CYP2D6 enzyme. Final hits with LoF-selective toxicity were confirmed on the HepG2 cell model and patient-derived hepatocellular carcinoma organoids.
Results
We identified 60 genes with prevalent constitutional LoF variants and the CYP2D6 enzyme was selected for further work due to its well known drug metabolic activity and the high frequency of 22q13 loss in cancers (Mertens et al., 1997). We observed a consistent pattern of responses to Rucaparib, the known CYP2D6 substrate (Zhao, Long and Wang, 2022), on both established HEK293T and HepG2 cell models, suggesting the robustness of our cell models. Three compounds with selective toxicity towards HepG2 and HEK293 cells lacking CYP2D6 activity were identified. One of them is currently available for use in clinical oncology and further confirmed on the patient-derived hepatocellular carcinoma organoids.
Conclusions
LOH in CYP2D6 gene can potentially guide drug use in cancer precision medicine and merits further clinical evaluation.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Cancerfonden.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
2304P - A phase II study of tepotinib in patients with advanced solid cancers harboring MET exon 14 skipping mutations or amplification (KCSG AL19 -17)
Presenter: Eun Joo Kang
Session: Poster session 08
2305P - Next-generation sequencing-based regression algorithm to determine homologous recombination deficiency scores in a pan-cancer cohort
Presenter: Sejin Kim
Session: Poster session 08
2306P - How TAILORx changed treatment allocation based on 21-gene recurrence score in the daily clinic: A single center retrospective analysis
Presenter: Elena Chiru
Session: Poster session 08
2308P - CyPep-1 reprograms the tumor microenvironment and enhances the efficacy of immune checkpoint inhibitors
Presenter: Bassam Janji
Session: Poster session 08
2309P - High DDR1 mRNA and protein expression across human tumor types correlate with epithelial composition of the tumor microenvironment
Presenter: Laura Dillon
Session: Poster session 08
2310P - Oxygen nano-bubbles attenuate hypoxia-induced tumour malignancy in tumour xenograft models
Presenter: Kumari Bhavya
Session: Poster session 08
2311P - Population pharmacokinetic-pharmacodynamic modeling to inform optimal dosing strategies for GI-101, a novel fusion protein, targeting IL2βγR and CTLA4
Presenter: Dongwoo Chae
Session: Poster session 08
2312P - SGLT2i dapagliflozin decreases NLRP3, IL-1 and PCSK9 expression in preclinical models of short-term doxorubicin cardiotoxicity
Presenter: Annamaria Bonelli
Session: Poster session 08
2313P - APOBEC mutagenesis and macrophage infiltration in cancer
Presenter: Andrea Gazzo
Session: Poster session 08
2314P - Quality and safety of research biopsies (RB) in oncology clinical trials
Presenter: Paolo Nuciforo
Session: Poster session 08