Abstract 195P
Background
Checkpoint inhibitor pneumonitis(CIP) is one of the most common fatal adverse events in the new era of immune checkpoint inhibitor(ICI). Screening the high risk group of CIP is a major clinical challenge to improve the safety of ICI therapy. However, there are lack of effective biomarkers to predict CIP. The practical difficulties of early screening highlight the need to explore new biomarkers. The aim of this study is to determine predictive biomarkers of CIP through proteomics methods, and then build a prediction model, so as to improve the safety of ICI therapy.
Methods
This study prospectively recruited 98 tumor patients. Fasting peripheral blood was collected from patients before ICI therapy for the first time. Patients were dynamically followed up and assessed for CIP. Serum protein spectrum was analyzed and identified by MALDI-TOF mass spectrometry(MALDI-TOF-MS) and LC-MS. Confirmatory studies were conducted by ELISA to quantitatively evaluate the expression of serum protein. R language is used to construct online interactive prediction model. This study was approved by the Ethics Committee of the First Affiliated Hospital of Xi'an Jiaotong University (XJTU1AF2021LSK-001).
Results
31 patients with CIP constituted the case group. A total of 88 peptide peaks were detected by MALDI-TOF-MS. 15 protein polypeptides with the most significant differences were selected for further identification. After quantitative verification by ELISA analysis, it was found that plasma serine protease inhibitor (SERPINA5), A-kinase anchor protein 6 (AKAP6), tubulin alpha-4A chain (TUBA4A) were significantly highly expressed in CIP patients. Based on this, online interactive visual prediction model was constructed (https://mass-cip.shinyapps.io/DynNomapp/). Harrell's C-indices of the training set and validation set were 0.974 and 0.968, respectively. The calibration curve and clinical decision curve showed satisfactory predicted value.
Conclusions
SERPINA5, AKAP6 and TUBA4A are considered useful biomarkers for predicting CIP. The predictive model has the potential to be a convenient, intuitive, and personalized clinical tool for assessing the risk of CIP.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
This work was supported by Outstanding Youth Project of Shaanxi Province (2020JC-35), Research and development projects in Shaanxi Province (2022ZDLSF04-11), Natural Science Foundation of Shaanxi Province (2022JQ-796), Major project of innovation Fund of Chinese Society of Clinical Oncology-MSD (Y-MSD2020-024), Shaanxi Sanqin Scholars Innovation Team (2021-No. 32), Beijing Science Innovation Medical Development Fund (KC2021-JX-0186-5) and National Natural Science Foundation of China (No. 82272073).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
217P - Clinical and molecular features of PTCH1 mutant in solid tumors
Presenter: Xuezheng Li
Session: Poster session 01
218P - Peripheral T cell activation phenotype is associated with clinical outcomes and immune-related adverse events of ipilimumab-nivolumab in advanced hepatocellular carcinoma
Presenter: WON SUK LEE
Session: Poster session 01
219P - Multicentric evaluation of amplicon-based next-generation sequencing solution for local comprehensive molecular tumor profiling
Presenter: Eloisa Jantus Lewintre
Session: Poster session 01
220P - Biomarker of blood age and inflammation in older cancer patients might predict outcome
Presenter: Marcus Vetter
Session: Poster session 01
221P - Peripheral T cell activation phenotype predicts clinical outcomes of atezolizumab-bevacizumab therapy in unresectable hepatocellular carcinoma
Presenter: Chan Kim
Session: Poster session 01
222P - Therapeutic opportunities for porcupine inhibition in gastrointestinal cancer
Presenter: Natalie Cook
Session: Poster session 01
223P - Artificial intelligence-based pathomics biomarker predict primary resistance to first-line treatment in metastatic colorectal cancers
Presenter: Gianluca Mauri
Session: Poster session 01
224P - Germline HLA-I/II is not associated with clinical outcome but the absence of HLA-A01 or the presence of HLA-B27 supertypes were correlated with improved clinical outcome among patients with NSCLC treated with pembrolizumab in combination with chemotherapy
Presenter: Afaf Abed
Session: Poster session 01
225P - Utility of next-generation sequencing (NGS) in patients with advanced cancer in a low-middle income country
Presenter: Milton Lombana Quinonez
Session: Poster session 01
226P - LongiBloodImmunoM: A multi-step analysis pipeline for longitudinal blood-based immunomonitoring for immunotherapy clinical trial
Presenter: Jiangfeng Ye
Session: Poster session 01