Abstract 176P
Background
The growing need for better predictive biomarkers in immunotherapy has driven the development of AI models across various fields. Despite this progress, most studies focus on single modalities, such as pathology or radiology. This study emphasizes the importance of multimodal biomarkers, combining radiology and pathology data, to optimize treatment outcomes and advance personalized medicine in immunotherapy.
Methods
We developed weakly-supervised deep learning (DL) models for CT and PDL1-stained immunohistochemistry (IHC) images. We trained a CT-based model to predict immunotherapy clinical benefit (PFS > 5 months) in a pan-cancer cohort from VHIO(n=369). Simultaneously, we trained a DL method to predict PD-L1 status from IHC images in an open source NSCLC cohort (n=233), validated in a pan-cancer cohort from VHIO (n=106). The model predictions of both modalities were aggregated and utilized for patient stratification in immunotherapy response. In the overlapping subset with both modalities' data (n=75), we explored the association between PFS and the combination of predicted clinical benefit by CT and predicted PDL1 status by IHC using Cox regression and log-rank test.
Results
The CT-based and IHC-based DL models exhibited effective performance in predicting PFS for immunotherapy response in the pan-cancer cohort, with hazard ratios (HR) of 0.62 [95% CI 0.5-0.78], p <0.05 and 0.66 [95% CI 0.44-1], p <0.05, respectively. In the multi-modal data subsets, patients classified as clinical benefit prediction by the CT-based model and PDL1 high by the IHC-based model (n = 20) exhibited better immunotherapy response (HR 0.44 [0.25-0.78], p <0.05) with longer PFS (median PFS 4.08 [2.70-10.91] months) compared to the rest (median PFS 1.81 [1.68-2.96] months).
Conclusions
Integrating radiology and pathology data improves response prediction compared to single modality models, emphasizing the potential of a multimodal approach for better patient stratification in immunotherapy.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
CRIS Foundation Talent Award (TALENT19-05).
Disclosure
R. Dienstmann: Financial Interests, Personal, Invited Speaker: Amgen, AstraZeneca, Boehringer Ingelheim, Ipsen, Libbs, Lilly, Merck Sharp & Dohme, Roche, Sanofi, Servier, GSK, Takeda, Janssen, Foundation Medicine; Financial Interests, Personal, Advisory Board: Bayer, Roche; Financial Interests, Personal, Full or part-time Employment, Oncoclínicas is a private healthcare provider in Brazil. I work part time as Medical Director of the Precision Medicine and Big Data Initiative. We develop molecular tests (pathology and genomics) that are offered to patients treated in the organisation as part of support programs sponsored by pharmaceutical companies and I coordinate research activities with real-world clinico-genomics cohorts: Oncoclínicas; Financial Interests, Personal, Stocks/Shares: Trialing; Financial Interests, Personal, Research Grant: Merck. E. Garralda: Financial Interests, Personal, Advisory Board: Roche, Ellipses Pharma, Boehringer Ingelheim, Janssen Global Services, Seattle Genetics, Alkermes, Thermo Fisher, MabDiscovery, Anaveon, Hengrui, F-Star Therapeutics, Sanofi, Incyte; Financial Interests, Personal, Invited Speaker: MSD, Lilly, Roche, Thermo Fisher, Novartis, Seagen; Financial Interests, Personal, Full or part-time Employment: NEXT Oncology; Financial Interests, Institutional, Funding: Novartis, Roche, Thermo Fisher, AstraZeneca, Taiho; Financial Interests, Institutional, Research Grant: BeiGene, Janssen. P.G. Nuciforo: Financial Interests, Personal, Invited Speaker: Novartis; Financial Interests, Personal, Advisory Board: MSD Oncology, Bayer; Financial Interests, Personal, Other, Consultant: Targos Molecular Pathology GmbH. J.N. Kather: Financial Interests, Personal, Invited Speaker: Fresenius, Eisai, MSD; Financial Interests, Personal, Advisory Board: Owkin, DoMore Diagnostics, Panakeia, London, UK. R. Perez Lopez: Financial Interests, Personal, Full or part-time Employment, VHIO staff (team leader of the Radiomics Group): VHIO; Financial Interests, Institutional, Research Grant, Co-PI of 3 research studies.: AstraZeneca; Financial Interests, Institutional, Research Grant, PI of a research study: Roche. All other authors have declared no conflicts of interest.
Resources from the same session
144P - Artificial intelligence supported treatment decisions for precision oncology
Presenter: Damian Rieke
Session: Poster session 01
145P - Identification of biomarkers of survival across multiple cancer types using eXplainable artificial intelligence
Presenter: Francesca Angileri
Session: Poster session 01
147P - Non-small cell lung cancer: Artificial intelligence enables the identification of survival signatures complementary to an Immunologically active gene expression signature involving previous therapies
Presenter: Pierre Saintigny
Session: Poster session 01
149P - Assessing the effect of single dose trastuzumab and pertuzumab (HP) on biological changes and pathological complete response (pCR) in ERBB2+ Breast Cancer: Results from the neoadjuvant BionHER study
Presenter: Nadia Gomez Serra
Session: Poster session 01
150P - Validation of a genomic assay in early-stage HER2+ breast cancer (BC) treated with trastuzumab and pertuzumab (HP): A correlative analysis from PHERGain phase II trial
Presenter: Antonio Llombart Cussac
Session: Poster session 01
152P - Efficacy of olaparib in advanced cancers with germline or somatic tumor mutations in BRCA1, BRCA2, CHEK2 and ATM: A Belgian precision tumor-agnostic phase II study
Presenter: Sofie Joris
Session: Poster session 01
153P - Descriptive analysis of the location of point mutations in BRCA and the risk of breast or ovarian cancer diagnosis
Presenter: Pablo Torres-Mozas
Session: Poster session 01
154P - Highly sensitive serum volatolomic biomarkers for pancreatic cancer diagnosis and prognosis
Presenter: Alfredo Martínez
Session: Poster session 01