Abstract 6P
Background
Lymph nodes (LN) act as central hubs for the orchestration of adaptive immune responses. A network of lymph node stromal cells (LNSC), including mesenchymal and endothelial cells, build a 3D network for immune cells to migrate and home to distinct niches in the LN. Within B cell non-Hodgkin lymphomas, indolent follicular lymphomas (FL) are characterized by subtle structural changes while the compartmentalization of the tissue remains present. In contrast, aggressive diffuse large B cell lymphomas (DLBCL) are defined by a complete loss of tissue organization indicating a potential role of LNSCs in tumorigenesis. While the morphological differences are well-known, the underlying molecular and cellular mechanisms remain poorly understood.
Methods
Here, we dissect the mechanisms underlying loss of structure in lymphomagenesis using combined single-cell transcriptome and spatially-resolved mapping approaches of LNSCs and immune cells.
Results
Using ultra-high plex immunofluorescence imaging, we characterized how lymph node cells organize into spatially distinct cellular neighborhoods, the disruption of which was congruent with lymphoma-induced remodeling. Using single-cell transcriptome data, we investigated the molecular programs driving this loss of organization. In DLBCL, chemokines relevant for immune cell organization were downregulated, while chemokines contributing to inflammation were upregulated, suggesting a phenotypic switch from a structural organized to an inflammatory and fibrotic state. In silico cell-cell interaction analysis indicated that besides the loss of mesenchyme-derived chemokine gradients, inflammatory immune cells outside of follicles turn into ectopic sources of these chemokines, an effect which likely contributes to the diffuse growth pattern of aggressive lymphomas. High expression of organizing chemokines was associated with better overall survival, this association being significant in FL and a trend in DLBCL.
Conclusions
Collectively, these data suggest that a reprogramming of the LN microenvironment triggers an imbalance in chemokine gradients, which underlies loss of tissue organization in aggressive lymphomas.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
68P - Dendritic polylysine with paclitaxel and triptolide codelivery for enhanced NSCLC ferroptosis through the accumulation of ROS
Presenter: Huae Xu
Session: Poster session 09
69P - Novel monoclonal antibodies can distinguish Cripto-1 from Cripto-3 proteins: Clinical implications and potential new biomarkers
Presenter: Josune Garcia-Sanmartin
Session: Poster session 09
70P - The human intratumor mycobiome is significantly influenced by an individual's race
Presenter: Dan Coster
Session: Poster session 09
71P - Preclinical characterization of ARX305: A next-generation anti-CD70 antibody drug conjugate for the treatment of CD70-expressing cancers
Presenter: Lillian Skidmore
Session: Poster session 09
72P - Impact of extended panel of genes for germline cancer testing
Presenter: Shaheenah Dawood
Session: Poster session 09
73P - Preclinical and clinical presentation of the nerve-driven tumor spread
Presenter: Dawid Sigorski
Session: Poster session 09
74P - Characterization of ERBB2 variation and their association with immune response in solid tumours
Presenter: Dong Wang
Session: Poster session 09
75P - Double-stranded RNA transfection induced anti-tumour effect mediated by dual RIG-I and TLR-3 immune pathways
Presenter: Jiayu Tai
Session: Poster session 09
76P - Improvement of whole-cell cancer vaccine anti-tumor effect by different injection methods
Presenter: Chin yang Chang
Session: Poster session 09
77P - Normative data on the sexual health questionnaires - QLQ-SHQ22, and the sexual domains of the QLQ-BR23/BR45 - for Norwegian general population with and without cancer
Presenter: Ragnhild Åsberg
Session: Poster session 09