Abstract 228P
Background
Clinical profiling studies have shed light on molecular features and mechanisms that modulate response or resistance to immunotherapy but their predictive value remains largely unclear. We (Bareche et al., Annals of Oncology 2022 ) and others (Litchfield et al., Cell 2021 ) have recently curated a compendium of public datasets of DNA, RNA and clinical profiles of patients treated with immunotherapy.
Methods
Leveraging our compendium of immunotherapy clinical datasets, we developed, PredictIO, an open-source meta-analysis pipeline to assess the predictive value of molecular predictors. We first used PredictIO to compute the association between immunotherapy response and established biomarkers, such as tumor mutation burden (TNB) or CD8 gene expression, and a collection of 91 molecular signatures curated from the literature. Second, we used PredictIO for de novo RNA signature discovery pipeline to build a new predictor of immunotherapy response.
Results
Using molecular and clinical profiles of ∼3600 patients across 12 tumor types, our meta-analysis pipeline revealed thatTMB and ∼50% of the gene signatures were significantly predictive of immunotherapy response across tumor types, although their predictive value were strongly dependent on specific tumour types. We next developed a de novo gene expression signature from our pan-cancer analysis and demonstrated its superior predictive value over other biomarkers. To identify novel targets, we computed the T-cell dysfunction score for each gene within PredictIO and their ability to predict dual PD-1/CTLA-4 blockade in mice. Two genes, F2RL1 and RBFOX2, were concurrently associated with worse ICB clinical outcomes, T-cell dysfunction in ICB-naive patients and resistance to dual PD-1/CTLA-4 blockade in preclinical models.
Conclusions
Our study highlights the potential of large-scale meta-analyses in identifying novel biomarkers and potential therapeutic targets for cancer immunotherapy. These initial results, while promising, suffer from severe limitations in terms of data availability for specific cancer types and the lack of frameworks to develop and validate multi-omics predictors of immunotherapy response in a collaborative and scalable way.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
University Health Network.
Disclosure
B. Haibe-Kains: Financial Interests, Personal, Advisory Board: BreakThorugh Cancer, IONIQ Sciences, CQDM; Financial Interests, Personal, Speaker, Consultant, Advisor: Code Ocean.
Resources from the same session
206P - WAYFIND-R: A global, real-world database of patients (pts) with a solid tumour profiled with next-generation sequencing (NGS)
Presenter: Jean-Yves Blay
Session: Poster session 01
207P - Palbociclib (P) in patients (pts) with solid tumors with CDK4 or CDK6 amplification (amp): Results from the Targeted Agent and Profiling Utilization Registry (TAPUR) study
Presenter: Maged Khalil
Session: Poster session 01
208P - Identification of BCOR mutation as a novel predictor of immunotherapy efficacy in gastrointestinal tumors
Presenter: Wuping Wang
Session: Poster session 01
209P - Molecular atlas of copy number variation(CNV) in lung cancer with brain metastases
Presenter: Xianfeng Zhang
Session: Poster session 01
210P - Lung tumour vascularity is a risk factor for survival in NSCLC patients undergoing surgery
Presenter: Andrea Riccardo Filippi
Session: Poster session 01
211P - Cost-efficient detection of NTRK1, NTRK2 and NTRK3 gene rearrangements using the test for 5’/3’-end unbalanced expression: The analysis of 8075 patients
Presenter: Evgeny Imyanitov
Session: Poster session 01
212P - Extracellular vesicle miRNA as effective biomarkers for predicting antitumor efficacy in lung adenocarcinoma treated with chemotherapy and checkpoint blockade
Presenter: Si Sun
Session: Poster session 01
213P - Unlocking cancer treatment opportunities by population-based advanced diagnostics in Norway
Presenter: Hege Russnes
Session: Poster session 01
214P - PESSA: A shiny app for pathway enrichment score-based survival analysis in cancer
Presenter: Ying Shi
Session: Poster session 01
215P - Identifying predictors of overall survival among TMB-low cancer patients treated with immune checkpoint inhibitors
Presenter: Camila Xavier
Session: Poster session 01