Abstract 518P
Background
Artificial Intelligence (AI) holds the promise to transform medicine during diagnosis, management and therapy of diseases. The AICCELERATE project will introduce an operational approach to develop AI-enabled digital solutions to improve medical processes by creating a digital twin. In our study, we performed the first pilot application of the AICCELERATE project at Bambino Gesù Children’s Hospital in Rome (OPBG). The aim of our study is to design a supervised machine learning (ML) model to predict time to surgery and time to diagnosis based (outputs) on time from admission to first consultation and imaging (inputs) in newly diagnosed pediatric patients.
Methods
We included pediatric patients with new diagnoses of brain tumors, treated in OPBG from December 2017 to December 2022. We collected from EHR the following data: age and sex, start and end date of the first admission, department of hospitalization, consultations and radiological imaging date, diagnosis, and surgery date.
Results
We included 48 patients with a pediatric brain tumor, with a mean age of 8.6 years. We used a multiple linear regression model, which does not require large datasets such as more complex models. Our analysis showed that delayed consulting and imaging led to a delayed diagnosis, with the consulting presenting a higher importance than the imaging. This result was validated by the model’s estimated regressors coefficients, with the consulting factor being assigned a larger weight β_C=1.81 than the imaging factor β_I=-0.33. Similarly, we observed that delayed consulting and imaging led to a delayed surgery, estimating a higher coefficient for the consulting β_C=0.71 than the one estimated for the imaging β_I=-0.06. While the ML model achieved a reasonable performance in both frameworks, the time to surgery was predicted with a lower MAE 4.45±0.87 compared to the diagnosis MAE of 6.74±0.95.
Conclusions
This preliminary study conducted in a small number of patients, suggests that decreasing time to consultation can shorten time to surgery in children with brain cancer. As the AICCELERATE is ongoing, more accurate models will be developed and will help to better understand how to optimize the journey of children with brain cancer.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
571P - Artificial intelligence-powered analysis of tumor lymphocytes infiltration: A translational analysis of AtezoTRIBE trial
Presenter: Martina Carullo
Session: Poster session 10
572P - Neoantigen heterogeneity among subtypes in colorectal cancer
Presenter: Fuqiang Li
Session: Poster session 10
574P - Comparative analysis of the tumor immune microenvironment (TIME) in primary and metastatic sites of microsatellite stable (MSS) and microsatellite instability-high (MSI) colorectal cancer
Presenter: Marwan Fakih
Session: Poster session 10
575P - Impact of immunological alterations and post-operative biomarkers on long-term outcomes in patients with locally advanced rectal cancer: Results from the STAR-01 study cohort
Presenter: Francesca Negri
Session: Poster session 10
576P - Prognostic values of a modified diagnostic biopsy-adapted immunoscore based on double immunohistochemical staining in patients with locally advanced rectal cancer
Presenter: Qiang Zeng
Session: Poster session 10
577P - Systematically assessing the intratissue microbiota in 937 patients with colorectal cancer
Presenter: Huanzi Zhong
Session: Poster session 10
578P - Tissue-resident microbiota characterization in colorectal cancer metastases
Presenter: Philippe Stevens
Session: Poster session 10
579P - A clinico-imaging predictive artificial intelligence model of relapse in colon cancer using baseline CT scans
Presenter: América Bueno Gómez
Session: Poster session 10
580P - Prognosis in stage II colorectal cancer: The effect of the primary tumor location and biomarkers
Presenter: Vincent Liégeois
Session: Poster session 10